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1 Introduction

Economic inequality and environmental degradation are certainly two of the most critical issues facing
societies today. Economists have long argued for the use of fiscal instruments to address these problems.
Labor and capital taxes can provide redistribution, and, following the Pigouvian principle, a pollution
tax can internalize environmental externalities. However, pollution taxes also have distributional impli-
cations as they heterogeneously impact households’ purchasing power. At the same time, capital and
labor taxes affect the costs and benefits of improving the environment by reducing incentives to work
and invest. This study aims to analyze how these instruments should be jointly optimized to tackle
both inequality and environmental degradation. Specifically, we ask: Do inequalities and redistributive
taxation call for more or less ambitious environmental policies? How do environmental policies affect
inequalities?

We address these questions from both a theoretical and a quantitative perspective. To do so, this
paper presents a dynamic fiscal climate-economy model with heterogeneous agents. We use a technique
introduced by Werning (2007) to extend the climate-economy model of Barrage (2020) to heteroge-
neous agents. In our model, households derive utility from consumption, leisure, and environmental
quality. The final consumption good is produced using energy as one of its inputs. Energy production
is polluting, which leads to environmental degradation that affects both economic productivity and
households’ utility. As in Barrage (2020), energy producers can reduce the emission intensity of their
output by engaging in costly abatement activities. Because of these costs, positive abatement occurs
only if producers also need to pay for their pollution, for example through a pollution tax. The govern-
ment thus faces multiple tasks at once: mitigating the pollution externality, providing redistribution,

and financing some exogenous government spending.

We model this as a Ramsey problem in which the government maximizes social welfare by choosing
the level of linear taxes—in particular, taxes on labor and capital income, energy, and pollution—and
a uniform lump-sum transfer to adjust the progressivity of the tax system. Because agents are hetero-
geneous but tax instruments are anonymous, the government must rely on distortionary instruments
to provide redistribution.! We derive optimal tax formulas and study the implications of heterogeneity
for optimal pollution taxation. We then use our model to examine how inequalities and distortionary
taxation affect the social cost of carbon (SCC) and the optimal carbon tax. We calibrate our climate
model following DICE-2016 (Nordhaus, 2017). On the economic side, we calibrate the fiscal system and
household heterogeneity (first in productivity, later in wealth and energy demand) to match US data.
Conceptually, our quantitative analysis examines the optimal fiscal policy of the US if they accounted
for the negative global impact of their emissions, assuming emissions from the rest of the world evolve

proportionally.

Theoretically, we find that the optimal pollution tax is a modified Pigouvian rule that accounts

'In a representative-agent economy, if the government could, it would obtain all necessary revenue via undistortive
lump-sum tazes. With inequality, the government typically prefers to provide lump-sum transfers for redistributive
purposes resorting to distortionary taxation. In this setting, there is no need to restrict the government from choosing

the level of lump-sum transfers or taxes.



for tax distortions via the marginal cost of public funds (MCF). However, because the government
can optimally choose the level of lump-sum transfers (or taxes), the MCF is not higher than 1 as in
representative-agent settings (see for instance Bovenberg and Goulder, 1996; Barrage, 2020).2 In fact,
we show that, when households have balanced-growth preferences, the MCF is on average equal to 1.
A direct implication is that the optimal pollution tax may only temporarily lie above or below the
Pigouvian level. These temporary tax distortions are driven by the costs associated with implementing
the second-best allocation. While these costs are on average null because the planner can optimally
choose the level of lump-sum transfers, they need not be in each period. We provide conditions under
which these costs are always null and discuss the determinants of temporal variations in tax distortions

when they are not.

Our theoretical results also highlight the role of consumption inequalities. When the MCF is equal
to 1, the second-best pollution tax is Pigouvian, but the Pigouvian tax is evaluated at the second-best
allocation. We show that consumption inequality affects the Pigouvian tax ambiguously through the
opportunity cost of emission abatement. On the one hand, consumption is valued less in the presence
of inequalities because it disproportionately goes to richer households with lower marginal utilities
of consumption. On the other hand, consumption inequalities increase the average marginal utility
of consumption, and thus the opportunity cost of abatement. We show that, with balanced-growth
preferences, the latter effect dominates if and only if the intertemporal elasticity of substitution is

lower than 1, in which case inequalities reduce the value of the Pigouvian tax.

Quantitatively, we find that the MCF plays an insignificant role. The second-best carbon tax
starts at about 0.5% below the SCC and then fluctuates at about 0.2% above or below. This result
contrasts with an influential finding from representative-agent settings that tax distortions lower the
optimal tax on carbon, cf. Bovenberg and Goulder (1996) and Barrage (2020). Perhaps surprisingly,
we find that the role of the MCF remains very small even if the government cannot optimally choose
the level of lump-sum transfers. The reason is that, in the presence of inequality, the optimal level of
distortionary taxes is much closer to the one that would be necessary to meet revenue requirements
than in a representative-agent economy, so the cost associated with this constraint is significantly
lowered. The SCC is, however, affected by the presence of inequalities, although the effect is not very
large: consumption inequality—after income taxes are set optimally—reduces the SCC by 3.9% in our
baseline calibration. The reason why the effect is not large is that inequalities are more effectively
addressed using income taxes than the carbon tax. Still, the carbon tax is affected by the residual
inequality, i.e. the level of inequality that remains after the planner has optimally set income taxes.

We compare our optimal policy to the one of a “climate-skeptic” planner who optimizes fiscal
instruments assuming climate change is exogenous, thus setting the carbon tax to zero. We find that
the additional revenue raised by the carbon tax is about equally split between increasing transfers and
reducing the labor income tax. Regarding the impact on welfare, we find that the optimal carbon tax

policy has progressive effects in the 215¢ century—owing to the higher progressivity of the tax system—

2An MCF above 1 means that transferring resources from the private to the public sector is costly, in which case it is

optimal to tax below the Pigouvian levy.



and very large positive but regressive effects afterwards, as richer households value environmental
improvements proportionally more relative to consumption. Importantly, we show that this result
stands in contrast to the representative-agent policy where the government uses the carbon tax revenue
exclusively to reduce the level of distortionary taxes: the overall policy would then have strongly
regressive effects. These results highlight the importance of considering household heterogeneity in
climate policy, as distributional implications have welfare consequences, and also impact the political
feasibility of climate policy.

We study the robustness of our main results to alternative calibrations and alternative settings.
We show that the effects of inequality and tax distortions on optimal carbon taxes remain close to our
baseline results when opting for a much more severe calibration of climate damages than the one in
DICE-2016. Similarly, changing the amount of fiscal pressure has only minor effects on our quantitative
results. The effect of inequality on optimal carbon taxes increases roughly proportionally with produc-
tivity heterogeneity and with the share of damages that directly affect utility. Furthermore, the effect
of inequality changes more than proportionally with the intertemporal elasticity of substitution (IES):
when the IES is reduced from our benchmark level of 1/1.45 (from DICE) to 1/2, inequalities lead to
a reduction in carbon taxes of 16.2% instead of 3.9%. We also consider alternative policy scenarios:
we study third-best policies, i.e. optimal fiscal policies when either the labor or the capital income
tax is exogenously fixed at its current level. While the role of inequalities and the MCF remain very
similar, these additional constraints lead to an additional fiscal interaction effect that has an ambiguous
effect on the optimal carbon tax: we show that when these taxes are fixed at a sub-optimally low level,
the optimal carbon tax should be reduced relative to its second-best level, and vice-versa. Finally, we
show that our results hold under a more general specification of preferences than the one used in our

benchmark, where environmental damages enter the utility function in an additively separable way.

To further explore the role of household inequality, we additionally consider households who differ
in wealth, energy demand, and exposure to environmental damages. First, if the planner is unable to
expropriate initial wealth, the optimal carbon tax is significantly affected to correct for this missing
instrument, but only in the first period. Quantitatively, the roles of inequality and tax distortions
remain very similar to the benchmark case. Second, we present a version of the model where households
consume an additional dirty good that uses energy as its only input. To account for the fact that
households are heterogeneously exposed to carbon taxes depending on their energy consumption, we
consider households with non-homothetic utility and we use the Consumer Expenditure Survey (CEX)
to match the observed distribution of energy budget shares in the US, both between and within income
groups. We show that this additional source of heterogeneity does not significantly affect the role of
inequality and tax distortions on the optimal carbon tax. While theoretically we find that it becomes
optimal for the planner to subsidize the energy good if the households it values relatively more have
higher energy needs, this additional instrument is quantitatively negligible. Naturally, this additional
source of inequality also implies that ignoring household inequality in climate policy leads to even larger
distributional effects. Third, we introduce heterogeneous sensitivity to environmental degradation. We
theoretically show that if environmental damages enter the utility function in an additively separable

way, heterogeneous environmental damages have no effect on the optimal pollution tax in the utilitarian



case. However, they do lead to higher pollution taxes when the planner directly values more those
households that are more affected by pollution. A Rawlsian planner would therefore tax pollution at a

higher level if poorer households are also disproportionately affected by environmental damages.

Related literature Our paper contributes to two strands of the literature. First, it contributes to
the literature on the optimal taxation of pollution. In a pioneering work, Pigou (1920) established
that the first-best policy response to an externality is to implement a tax equal to its social cost. An
extensive literature has then investigated optimal pollution taxation in a second-best environment. In
a representative-agent framework, when the government cannot optimally choose the level of lump-sum
taxes or transfers to finance public expenditures, distortionary taxes typically raise the MCF above
1, and it becomes optimal to set the pollution tax below the Pigouvian level (see e.g., Sandmo, 1975;
Bovenberg and de Mooij, 1994; Bovenberg and van der Ploeg, 1994; Bovenberg and Goulder, 1996).3
More recently, other papers have considered this problem with heterogeneous agents and a uniform
lump-sum transfer (see e.g., Jacobs and de Mooij, 2015; Jacobs and van der Ploeg, 2019), arguing that
in this set-up the MCF is equal to 1 and the second-best tax is set at the Pigouvian level.*

While these papers focus on static settings and model the pollution externality in a stylized manner,
the recent work of Barrage (2020) creates a critical bridge between the climate-economy literature and
the dynamic public finance literature. Her framework integrates a climate-economy model in the spirit
of Golosov et al. (2014) into a representative-agent Ramsey model (see Chari and Kehoe, 1999, for
a review). In this setting, tax distortions again call for lower taxes on carbon emissions. Our main
innovation relative to Barrage (2020) is to introduce heterogeneous agents, which we see as important
for two reasons. First, this allows us to jointly study optimal environmental and distributional poli-
cies, both theoretically and quantitatively in a dynamic, general equilibrium framework. In addition
to the importance of equity in normative analysis, recent experience has shown that the distributional
effects of environmental policies were also critical to ensure their public support. Second, agent het-
erogeneity provides a different rationale for distortionary taxation. In representative-agent settings,
the government needs to rely on distortionary taxes to finance its expenditures, since lump-sum taxes
are ruled out. In our setting, by contrast, the government wants to use distortionary taxes beyond
what is needed for revenue in order to provide redistribution by rebating the proceeds through uniform
lump-sum transfers.® The uniformity constraint plays the same functional role as the no lump-sum tax
assumption in the representative-agent case: it limits the set of available instruments and rules out the
first best.

3For further references on second-best pollution taxation in representative-agents models, see Barrage (2020).
4Other studies that analyze the joint design of pollution and non-linear income taxes conclude that deviations from the

Pigouvian principle may be optimal—e.g., Pirttild and Tuomala (1997), Cremer et al. (1998), Cremer and Gahvari (2001)
and Micheletto (2008). This is the case if doing so allows for a relaxation of incentive compatibility constraints. Kaplow
(2012) also analyzes a setting with pollution and non-linear income taxes, and shows that it is possible to construct Pareto

improvements if pollution taxes deviate from their Pigouvian level.
5Unlike lump-sum taxes, lump-sum transfers are feasible in practice. Recent policy proposals even call for using such

instruments to redistribute the carbon tax revenue (see the Economists Statement on Carbon Dividends signed by 3,354

American economists, Akerlof et al., 2019).



Recently, a few papers have investigated optimal carbon taxation with incomplete markets, there-
fore introducing both inequality and imperfect insurance (Le Grand et al., 2022; Belfiori et al., 2024;
Wohrmiiller, 2024).6 To maintain tractability and reduce computational complexity, these studies con-
sider either more restrictive welfare objectives or constrained policy instruments. By contrast, our
approach allows us to provide analytic expressions for a very general Ramsey problem focusing on the
role of inequality. In a follow-up paper, Douenne, Dyrda, Hummel, and Pedroni (2024), we also address
the distinct issue of idiosyncratic uninsurable risk and show that the key elements driving optimal devi-
ations from Pigou in the present paper extend to this framework. While the follow-up study provides a
richer environment to explore these elements quantitatively—building on the computational approach
introduced by Dyrda and Pedroni (2023)—the present paper allows us to analytically characterize their
determinants. In doing so, our paper also relates to a large public finance literature that studies redis-
tribution while abstracting from insurance. This includes not only the Ramsey literature (for a recent
example, see Straub and Werning, 2020), but also most of the Mirrleesian literature (e.g., Scheuer and
Werning, 2017; Sachs et al., 2020; Ferey et al., 2024). Moreover, our model without risk endogenously
matches, without targeting, the level of consumption inequality observed in the US, which is the key

determinant of how inequality shapes the optimal carbon tax.

Although our optimal tax formulas resemble the ones in Barrage (2020), taking agent heterogeneity
into account significantly changes the implications of tax distortions. In particular, we find that the
MCEF averages to 1 over time and that its temporal variations are quantitatively insignificant, so the
optimal pollution tax is approximately Pigouvian. Our results also show that, unlike in representative-
agent models, the weak double-dividend hypothesis—according to which it is optimal to use the pollu-
tion tax revenue exclusively to reduce distortionary taxes (see e.g., Goulder, 1995)—does not hold with
heterogeneous agents, similar to Jacobs and de Mooij (2015). At the optimum, the welfare gain from a
marginal reduction in tax distortions is equal to the marginal cost from increasing inequalities, hence
in our quantitative analysis the optimal policy divides the carbon tax revenue about equally between

reducing tax distortions and providing redistribution.

Second, this paper contributes to the analysis of the distributional effects of environmental taxes
in general equilibrium. An extensive literature has analyzed the distributional effects of environmental
taxes through the consumption channel (for a recent survey, see Pizer and Sexton, 2019), generally
pointing to regressive effects since the consumption share of polluting goods tends to decrease with
income (Levinson and OBrien, 2019). More recently, several authors have also analyzed the hetero-
geneous incidence of environmental taxes on households’ income. While a number of papers found
progressive effects due to the larger negative impact of the policy on capital income relative to labor
income and transfers (see e.g. Rausch et al., 2011; Fullerton and Monti, 2013; Williams et al., 2015;
Goulder et al., 2019), the recent work of Kénzig (2021) exploits exogenous shocks to the EU-ETS price
to show that carbon taxation has a larger negative impact on poor households’ income. Many papers
have also shown that the incidence of carbon taxation largely depends on how the tax revenue is recy-

cled, with lump-sum transfers typically leading to less inequality and income tax cuts to higher levels

A related literature studies the distributional effect of climate policy with incomplete markets (Benmir and Roman,
2022; Kuhn and Schlattmann, 2024), but not optimality.



of aggregate efficiency (e.g., Williams et al., 2015; Fried et al., 2018, 2024; Goulder et al., 2019; van der
Ploeg et al., 2022). Finally, a few papers have considered the heterogeneous environmental benefits of
climate change mitigation between generations (e.g., Leach, 2009; Kotlikoff et al., 2021), between coun-
tries/regions (e.g., Hassler and Krusell, 2012; Krusell and Smith Jr, 2022; Cruz and Rossi-Hansberg,
2021; Bourany, 2024), or both (Kotlikoff et al., 2024).

We contribute to this literature by jointly analyzing the economic and environmental impacts from
optimal pollution taxation, both over time and between heterogeneous households who differ in income,
wealth, and energy demand. We find that optimally introducing a carbon tax, while accounting for

redistribution, leads to progressive welfare effects, in contrast with the representative-agent policy.

The rest of the paper is organized as follows. Section 2 presents the baseline model, and Section 3 the
optimal tax formulas. Section 4 describes our calibration and Section 5 presents our main quantitative

exercise. Section 6 considers the role of additional sources of inequality. Section 7 concludes.

2 Model

The model builds on Barrage (2020). One sector of the economy produces a final good using cap-
ital, labor, and energy, which is itself produced in the second sector. Emergy production generates
pollution that leads to environmental degradation, which affects productivity and households’ utility.
The government finances an exogenous stream of expenditures and lump-sum transfers using taxes on
labor income, capital income, energy, and pollution. The key departures from Barrage (2020) are that,
in our model, households are heterogeneous and the government can optimally choose the level of a
(non-individualized) lump-sum transfer or tax. Consequently, although the government has access to

a non-distortionary source of revenue, it uses distortionary taxes for redistributive purposes.

2.1 Households

We consider an economy populated by a continuum of infinitely-lived agents, or dynasties divided into
types @ € I of size m;. The total population size in period ¢ is N;. Each agent, or dynasty of type
t € I ranks streams of per-capita consumption of a final good ¢;;, per-capita labor supply h;;, and

environmental degradation Z; according to the preferences

oo
> B'Neu(cin hig, Z1). (1)
t=0

In our benchmark, agents are heterogeneous in two dimensions: their productivity levels, e;, and their

initial asset holdings, a;o. Productivity levels are normalized such that ), mje; = 1. To focus on the

effects of inequality without studying the implications of risk, we assume throughout that productivity
levels are time-invariant. Hence, all inequality in labor income is permanent and does not result from
idiosyncratic shocks to labor productivity. An equivalent interpretation is that ex-ante heterogeneous
households face idiosyncratic earnings risk but can trade in complete asset markets. This modeling

approach allows us to derive theoretical results as in Barrage (2020), Straub and Werning (2020), and



Chari et al. (2020), while at the same time capturing the fact that differences in labor income are, to

a large degree, persistent (see, for example, Storesletten et al., 2004).

Agents’ assets are composed of government debt and capital, and we denote b;; and k;; as the
number of units of these assets held by agents of type ¢ between periods ¢ — 1 and ¢, with a;; =
bit + kit Aggregates are denoted without the subscript i: Cy = Ny Y, miciy, Hy = Ny Y, mieihiy,
By = Ny Yy, mibit, and Ky = Ny . miki;. In addition, per capita consumption and hours worked are
denoted by ¢; = C;/Ny and hy = H;/Ny.

Let p; denote the price of the consumption good in period ¢ in terms of consumption in period 0 (so
that pg = 1), w; and 7 denote the real wage and the rental rate of capital in period ¢, and Ry its gross
return (between ¢t —1 and t). Finally, let 75, and 7 ; represent the labor and capital income taxes, and
T; the aggregate uniform lump-sum transfers received by households in period ¢, which, importantly, is
non-individualized and hence the same for all households.” Given kio, i, prices {ps, we, Re}yo ), and
policies {TH,t,TK,t,Tt}fio, agents of type i choose {c; ¢, i, kit41, bi7t+1}fi0 to maximize (1) subject to

the budget constraint

(o) (o)
ZptNt (Cit + kigr1 +bigg1) < ZptNt (1= 7 ) weeihie + Ry (kie + big) + Ty /Ni)
t=0 t=0

where Ry = 1+ (1 — 7x¢) (r — 9), for t > 0. Here, we use the convention that the capital income tax
is levied on the rate of return net of depreciation, but none of our results depend on it. No arbitrage
requires p; = Ry11pet1, and defining T = 7% p/T; as the present value of lump-sum transfers, the

budget constraint can equivalently be written as
(o)
ZptNt (Cz‘,t — (1 —7my) wtez‘hz‘,t> < RoNoa;o+T. (2)
t=0

From the first-order conditions of agent i’s problem we have

t Ue,it Uh,it

=p;,  and

= — (1 —7m) eqw,
Uc,i,0 Uc,it

which holds across all agents. To simplify the exposition, we use subscripts x,i,t to denote partial
derivatives with respect to argument = for agent of type ¢ at time ¢, and suppress function arguments

when there is no risk of confusion.

2.2 Final good sector

As in Barrage (2020), there are two production sectors. In the final good sector, indexed by
1, a consumption-capital good is produced with a concave, constant returns to scale technology,

F (K4, Hiy, Er), that uses capital Kj¢, labor Hp:, and energy E;. The total factor productivity

"In practice, while individualized lump-sum transfers are infeasible, transfers can be conditioned on some household
characteristics. Letting the planner optimize over transfers that are “in between” uniform and individualized would bring

the economy closer to first-best.



is given by A;+ and the function D (Z;) controls the damages to production implied by environmental
degradation, with D’(Z;) > 0. The output Y7 ; is given by

Yie=(1—D(Z))A1+F (K1, Hi ¢, Ey).

Firms in the final goods sector maximize profits by choosing capital, labor and energy. The first-order

conditions are:

re=(1—D(Z)) A1+Fk+, (3)
wy = (1 =D (%)) A1t Frg, (4)
PEt = (1 -D (Zt)) Al,tFE,t- (5)

Here, pg,; denotes the price of energy in period ¢. Because there are constant returns to scale and

inputs are paid according to their marginal productivity, final goods producers make zero profits.

2.3 Energy sector

The energy sector, indexed by 2, produces energy F; using capital K5 ; and labor Hs; with a constant

returns to scale technology so that
Ey = A3 G (Ko, Hay) - (6)

Energy producers can provide a fraction p; of energy from clean technologies, at additional cost
Oy (e, Et), which satisfies ©,,4,Op 4, Ouut > 0, Opgy > 0 and 64(0, Ey) = O¢(,0) = 0. Convex-
ity in ©4(+, -) captures decreasing returns to abatement (as in Nordhaus, 2017). We choose this general
specification because it nests the one used in Barrage (2020), where Oy (pu, Et) = Oy (utEt), and the
one in Nordhaus (2017), where it is equivalent to ©; (u¢, Et) = O¢ (ue) Ey. In our calibration, we opt
for the latter specification in order to follow DICE as closely as possible. Total profits from energy

production are given by
II; = (ppt — m1t) Bt — B4 (1 — p1¢) By — wyHop — 1Koy — Oy (e, Ey)

where 77 ; denotes the excise intermediate-goods tax on total energy and 7 ; denotes the excise tax on
pollution emissions EM = (1 — y;) E; which will be the carbon tax in our quantitative analysis. Firms
maximize profits subject to the technology constraint given by equation (6) by choosing capital Koy,

labor Hs;, and the abatement share ;. The first-order conditions are

re = (pee — 714 — TEL(1 — ) — Opy) A Grey, (7)

wy = (pE,t —TIt— TE,t(l - Mt) - @E,t)AZtGH,ta (8)
©

TEy = E—“tt (9)

Profits in the energy sector are positive if there is positive abatement and ©(-,-) is strictly convex in

its second argument. To prevent the need to specify firm ownership, we assume these profits, if there



are any, are taxed at a confiscatory rate 7, ; = 1.8 As in DICE, these profits are zero in our quantitative

analysis.

Capital and labor are mobile across sectors, so market clearing requires

K+ Koy = Ky, (10)
Hy:+ Hyy = Hy. (11)

2.4 Government

Fach period the government finances its expenses G; and lump sum transfers T; with proportional
income taxes on capital 7x; and labor 7p,, total energy taxes 77;, and emissions taxes 7g;. The

government’s budget constraint is

RoBy+ T + ZPth = Zpt (ThpweHy + Ty (10 — 0) Ky + 114 By + T (1 — ) By + 11;) (12)
t t

Although the instruments levied are proportional, the tax system is progressive when transfers are
positive. The reason for focusing on linear instruments is twofold. First, as shown in Piketty and Saez
(2013) and Dyrda and Pedroni (2023), an affine tax system provides a good approximation of the actual
US tax system.? Second, with linear taxes the optimal tax problem can be formulated as a standard
Ramsey problem despite the fact that individuals are heterogeneous in terms of their productivity levels
and asset holdings—see Werning (2007). If instead the government could optimize non-linear taxes (for
instance, on labor or capital income), the impact of inequality and tax distortions on optimal carbon

taxes would likely be smaller, because the resulting allocation would be closer to first-best.

2.5 Environmental degradation

The environmental variable is affected by the history of pollution emissions EM = (1 — p;) B, initial

conditions Sy, and the history of exogenous shifters n; according to
Zy=J (S0, B\ .y EM o, coymy) - (13)

In our calibration below, J is a climate model that determines Z;, the global mean temperature change
relative to pre-industrial levels. In this section and the next, we do not further specify this function and
our theoretical results can apply to any kind of pollution externality affecting production and household

utility.

8Doing so is typically optimal, as taxing pure profits does not generate distortions and income from shareholdings
tends to be unequally distributed.

9 As income rises, transfers are phased out and income taxes phased in, yielding an overall tax-transfer system that can
be approximated by an affine function. A model with uniform transfers and linear income taxes, like ours, can thus serve
as a reduced-form representation of the more complex system with targeted transfers and progressive taxes observed in
the US. Normatively, the restriction is also not too severe: starting from the US system, Heathcote and Tsujiyama (2021)
estimate that the welfare gain from moving to the optimal affine system is about two-thirds of that from implementing

the fully nonlinear Mirrleesian optimum.



2.6 Competitive equilibrium

Given the resource constraint for the final good, which states that total output net of abatement costs

can be used for private consumption, public consumption, and investment,
Ntct + Gt + Kt+1 + @t (:U’tv Et) = (1 - D (Zt)) Alth (Kl,ta Hl,ta Et) + (1 - 5) Kt, (14)

we define a competitive equilibrium as follows.

Definition Given a distribution of assets {aio}, aggregate capital Ko and aggregate bond holdings
By, a competitive equilibrium is a policy {Th i, Tk, T1t, TEt Tt }egs @ price system {pg, wy, T, DB} oy
and an allocation {(ci,t,hi,t)i ,KLt,KQyt,Kt+1,H17t,H2yt,Ht,Et,Zt,,UJt};)iO such that: (i) agents choose
{(Ci,hhi,t)z‘}zo to mazimize utility subject to budget constraint (2) taking policies and prices (with
pt = Ripapey1) as given; (i) firms mazimize profits; (iii) the government’s budget constraint (12)
holds; (iv) markets clear: (6), (10), (11), and (14) hold; (v) the environmental variable follows (13).

3 Optimal tax rules

In this section, we use the technique introduced by Werning (2007) to express agents’ equilibrium
consumption and labor supply as a function of aggregate variables, and subsequently solve the Ramsey

problem as a function of aggregates instead of their full distributions.

3.1 Ramsey problem

A simple characterization of equilibrium Because the government sets linear tax rates, all agents
face the same marginal rate of substitution between consumption and leisure. Consequently, the distri-
bution of individual allocations (c; ¢, h;¢) is efficient given aggregates (ct, he, Zt), where ¢; = Cy/N; and
hy = H;/N; denote the average consumption and hours worked in period t. Following Werning (2007),
it is therefore possible to split the optimal tax problem into two steps.!® The first is to determine
individual allocations given aggregates, and the second is to determine the aggregates. Starting with
the first step, denote by ¢ = {p;} a set of market weights with ¢; > 0. These weights determine
how aggregate consumption and labor supply are distributed among agents. Using the property that
individual allocations are efficient given aggregates, we can characterize these individual allocations by

solving the following static sub-problem for each period t, given weights (:

U (e, hi, Zes ) = max Y wipgu(cip, his Zt)

Cityhit
3
s.t. gmci,t:ct, and gﬂ'ieihi,t:ht-
i i

Here, U (¢, he, Zt; ) denotes the indirect aggregate utility function, computed using market weights

(15)

and aggregates. For simplicity, in what follows we assume that utility is additively separable in Z;, so

10This would not be possible, for instance, if the government levied non-linear taxes on labor or capital income. In
that case, not all households face the same marginal rate of substitution between consumption and leisure, or between

consumption goods at different points in time. See also the discussion in Section 2.4.
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that we can write
w(Cit, hit, Zy) = 0 (cig, hig) + a(Zy).

We show, in Appendix F, how our results generalize to non-separable preferences.

Implementability condition Applying the envelope theorem to problem (15) and combining the

first-order conditions with those from the consumers’ problem we get

%:M:—wt(l—ﬁ”) and %:%:&.

Uet  Uecit€i Y Ueo  Ucio Bt
Using these relationships to substitute out for after-tax prices in each agent’s lifetime budget constraint,
for any agent 7 we can derive an implementability condition that depends only on the aggregates ¢; and

h¢, and market weights :
Ueo(RoNoaio +T) = Z BN, (thCTt (ct, hus 0) + Ungeihiy (ce, b 90)>, Vi, (16)
t=0

with ¢y (ct, he; ) and R (ct, he; ) solutions to problem (15). The following Proposition follows imme-

diately from the arguments above.

Proposition 1 An aggregate allocation {CtaHl,hHZ,tyKl,hKZ,tyEtyZt7,ut};>io can be supported by a
competitive equilibrium if and only if the market clearing conditions (10), and (11) hold, the resource
constraints (6), (13), and (14) hold and there exist market weights ¢ and a lump-sum transfer T' such
that the implementability conditions (16) hold for alli € I. Individual allocations can then be computed
using functions ¢y and b}y, prices and tazes can be computed using the firms’ and agents’ first-order

conditions.

Optimal tax problem Let \; be the planner’s welfare weight on type 4, with >, m\; = 1. To-
gether with the concavity of the individual utility function, these weights determine the government’s

preferences for redistribution. The Ramsey problem is

t (m m R
NA'((' vhis @) hi(ce s ) Z), 17
{Ct7H1¢t7}{II;3§{1,t,K2A’t,;B imii (@ ey (o has ), hily (eo hus @) ) + (Z2) (17)
Et,Zt,ut }520,T0 it
subject to
o0
Uc70 (RONOCZi,O + T) = ZﬁtNt (Uc,tcﬁ(Ct, ht, 90) + Uhyteih?} (Ct, ht7 SD)) , \v4 i,
t=0

FriGai =GgiFag, YVt>0,
Nict + G+ Kip1 + Oy (e, Ey) = (1= D (Zy)) A1 F (K, Hie, By) + (1—0) Ky, Y E>0,
Ey = A2,G (Ko4,Hoy), Vt>0,
Zy=J(So, BY' sy EM moyeym), Y120,
Kit+ Koy =K, Vit>0,
Hi4+ Hyy = Nehyy, Vt>0.
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The first of these constraints is the implementability condition, which must hold for each agent . It is
written solely in terms of aggregate variables and states that the present value of consumption equals
the present value of labor income, initial assets and lump-sum transfers. The second constraint states
that the marginal rate of technical substitution between capital and labor is the same in both sectors,
a restriction the government needs to satisfy because it does not use sector-specific instruments and
factors are mobile across sectors. The other constraints reflect market clearing for capital, labor, and
goods, as well as technological constraints.

To simplify the exposition, we assume for now that there is no initial wealth inequality, that is
a;0 = ajo for all 4 and j 1 An equivalent interpretation is that there is initial wealth inequality, but
that all initial wealth can be expropriated by the planner. This would be optimal and can be achieved
by taxing it directly, setting Ry = 0, or through a combination of consumption and labor taxes—see
Werning (2007) for a discussion.!? In Section 6.1, we relax the assumption that there is no initial wealth
inequality, or equivalently that all initial wealth can be expropriated, and study the implications for
optimal taxes. Without initial wealth inequality and with the ability to adjust lump-sum transfers, the
optimal level of 7 is indeterminate. We therefore assume that 7x o is taken as given by the Ramsey

planner.'3

3.2 General formulas

Capital and labor income taxes From the planner’s first-order conditions, the labor and capital

income taxes are determined by

B and Rivr Wepr Uey
b ) - 3
Uet Why 1 Wer Ucts1

where Ry | =1+ (1 — D(Zy41))A1,441FK 141 — 0 is the social return to capital, and the pseudo-utility

function W is defined as

W(ce, he, Zt; 0,0, A) = Ve, he, Zi; 0, A) + Z 0 Zi(ct, he, ),

with
Ve, hiy Zis o, A) = ZWMW(C% (ct, he; 0) s Wiy (e b ) 5 Zi), (18)

denoting the aggregate utility based on the planner’s weights,

Zi(ct, hey o) = Uecl’y (e, he; 0) + Ungeihi’y (o, hes @) (19)

HNotice that the absence of initial wealth inequality does not mean there is no wealth inequality in future periods: in

our model, persistent differences in labor productivity ultimately lead to differences in wealth.

12Levying a confiscatory tax on all initial wealth is generally optimal if assets and productivity are positively correlated.
In that case, taxing wealth reduces inequality without generating any distortions.

131f there is initial wealth inequality, the level of 7 o is no longer indeterminate. However, when studying the impact
of initial wealth inequality on optimal taxes in Section 6.1, we also treat 7k, as given. The reason for doing so is that
optimizing over 7x o allows the planner to confiscate all initial wealth, which immediately gets rid of all initial wealth

inequality as well.
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denoting the difference between agent ¢ spending on consumption and labor income in period ¢ as it
appears in their implementability constraint, and 7;6; denoting the Lagrange multiplier on the imple-
mentability constraint of agent ¢ in the Ramsey problem. These optimal tax formulas are the same as
the ones obtained in Werning (2007), and hold under more general utility specifications—Appendix F

shows how they generalize when utility is not separable with respect to Z;.

Excise taxes on energy and emissions The planner’s first-order conditions together with the
firms’ equilibrium conditions imply

T]7t =0.

As long as labor, capital, profits, and pollution can be taxed, there is no point in distorting production
decisions. This result is also found in Bovenberg and Goulder (1996) and Barrage (2020), and goes
back to the production efficiency theorem of Diamond and Mirrlees (1971). Turning to the pollution

tax, we obtain

o0
A Verws +2imi0iZeiir N iVzisg
TEt = J d L 2Dy A Py s — : J . 20

ot ;5 < Ver + >, mi0iLeiy LI T Ver + >, mi0iLeis Bt (20)

When the pollution tax increases, abatement increases, which in turn increases the scarcity of the final
good. The opportunity cost of reducing emissions by increasing the pollution tax, therefore, corresponds
to the marginal cost of increasing the final good’s scarcity, captured by the term V. ;+ >, m;0;Z.; ;. The
latter is equal to the marginal utility of raising aggregate consumption as computed using the planner’s
weights, V.;, plus a term that captures the marginal reduction in the planner’s implementation cost
from an increase in aggregate consumption, » . m#;Z.;¢. Intuitively, 6; represents the shadow cost of
transferring one unit of consumption to household ¢, and ), 7;6;Z; ; represents the cost for the planner
to implement its preferred allocation in period t. The degree to which this cost depends on the scarcity
of the final good, ¢, is captured by the term Z; ;.

Importantly, equation (20) holds both in the first-best (with 6; = 0 for all ) and in the second-best.
Still, the optimal pollution tax may differ between these two fiscal environments for three reasons:
(i) the path of aggregate variables, (ii) the value of the marginal implementation cost, and (iii) given
aggregates, the distribution of individual allocations. The first of these captures differences in the size
of the economy between first-best, where distortionary taxes are equal to zero and redistribution is
achieved through individualized lump-sum taxes and transfers, and second-best, where distortionary
taxes are used to provide redistribution. The second and third capture the effect of tax distortions
and the effect of inequality, respectively. We explain these forces, which we attempt to quantify in

Section 5, in more detail below.

3.3 Comparison with first-best

The role of tax distortions The first potential difference between the first- and the second-best
pollution tax lies in the value of the marginal reduction in implementation cost, ZZ mi0iLc ;. The first-

best allocation—the one that maximizes welfare subject to only resource constraints—is achieved when
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the planner has access to individualized lump-sum transfers. The corresponding first-order conditions
imply

0; =0, Vi.
In words, the government sets the individualized lump-sum transfer in such a way that the imple-

mentability condition for each agent is not binding. It follows that the planner can achieve full redis-

tribution at no cost, and the optimal pollution tax simplifies to

et NiyiVziyj
TEt = E ﬁj< Dt—l—]Al t+th+] V—t JEg”J-i—j'
(&

This formula illustrates the Well—known Pigouvian principle according to which the optimal corrective
tax is equal to the social cost of the externality: the tax is equal to the discounted sum of marginal

(utility and production) damages valued at the marginal utility of consumption.

The second-best allocation maximizes welfare subject to resource constraints and implementability

conditions (16). The first-order condition with respect to the uniform, non-individualized transfer gives
i

The non-individualized transfer is set in such a way that the implementability condition is not binding

on average. From this it follows that the impact of raising aggregate consumption on the implementation

Z 7i0iLc ;4 = cov <9i7 Im,t)-

Thus, at the second-best, the sum of the multipliers associated with the implementability conditions

costs is

is zero, but the marginal cost for the planner to implement its preferred allocation, in a given period,
is not necessarily zero. The definitions below lead to Proposition 2 which states how the second-best

pollution tax deviates from the Pigouvian principle when the covariance term above deviates from 0.

Definitions (Pigouvian tax) From the first-best tax formula, we can decompose the Pigouvian tax

, , Pigou,Y .. Pigou,U
into a production component, TRt , and a utility damage component, TR ,

PzgouY g Vett) ct+]
Bt E ey V., ~— DiyjArii P T gar 4,

j=0 &
(o)
Pigou,U _ (_1)Zﬁj Nt+jVZ,t+jJ
TE,t - Vv ng,t-i-j?
- c,t
7=0
. . . Pi Pigou,Y P . .
with the total Pigouvian taz TEZtgou = 15707 4+ 1 ZgOUU, the share of marginal utility damages at
time t,
Pigou,U
U _ TE
Wi = Pigou ’
Tpt

and the share of marginal production damages occurring at time t + s due to a marginal change in

emissions at time t, )
S
5 ‘/c,t+sDt+5A1,t+sFt+s JEtM,t—&-s

= - — : : .
Zj:o BIVe,t+; Dt+jA1yt+J Fiyj JE{”J-l—j

At_;’_s =
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Notice that Tgigou denotes the Pigouvian tax rule, which can be evaluated at different allocations.

In particular, 752 corresponds to a special case where ngtgou is evaluated at the first-best allocation.

Definition (Marginal cost of funds) Let us define the marginal cost of funds (MCF) as the ratio of

the public to the private marginal utility of consumption,
Vit

MCFt = ~
Ve

where v1; denotes the Lagrange multiplier on the final-goods resource constraint.

Recall that V. ; measures the marginal utility of raising aggregate consumption, ¢;, computed using
the planners weights. This is used to convert the welfare costs of environmental damages and tax
distortions into consumption units in the computation of both the Pigouvian tax and the MCF. Without
inequality, V. coincides with the marginal utility of consumption of the representative agent. With
inequality, the welfare benefit of raising aggregate consumption generally depends on the distribution

of marginal utilities.

Definition (Balanced-growth preferences) An agent has balanced-growth preferences if its utility

function can be expressed as

(ci(1 = shi))' ™7
l1—-0

with 1/o the intertemporal elasticity of substitution (IES).

u (e, hiy, Z) =

+u(2), (21)

s Pigou
Proposition 2 Let TEi

denote the Pigouvian tax evaluated at the second-best allocation. When
the planner has only access to a uniform lump-sum transfer, the optimal pollution tax formula is a
modified Pigouvian rule adjusted for the MCF,

: o~ MCFy, wV
__Pigou t+7 ) U t
TEETTEE g (z:: Mcr, Sl e MCFt> ’ (22)
with
isLei
MCF; =1+ M‘ (23)

Ve
If agents have balanced-growth preferences, then from period 0 the welfare-weighted average MCF is 1,
>2o NSV, x MCF,
Yo NeSV,
with Vi =V (et, hey Zi; 0, N). If the IES is equal to 1, then MCF; =1 for allt > 0.

1 Jacobs and de Mooij (2015) and Jacobs and van der Ploeg (2019) use an alternative definition of the MCF that takes
into account fiscal externalities resulting from income effects. They find that the MCF equals 1 at the optimal tax system,

=1, (24)

owing to the fact that the government can optimize a lump-sum transfer (see also Jacobs, 2018). However, because as in
Barrage (2020) we optimize over the allocation variables directly rather than over tax instruments, it is more suitable to
define the marginal costs of funds as the ratio between the multiplier on the government budget constraint and the social
welfare impact of raising aggregate consumption. This definition is closer to what Jacobs and de Mooij (2015) refer to as
the traditional measure of the MCF, and, as we show below, captures the difference between optimal pollution taxes in

first-best and second-best.
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The proof of Proposition 2 is provided in Appendix A.5. The optimal pollution tax balances the
marginal benefits of pollution abatement against the opportunity cost from reductions in aggregate
consumption. In the first-best, this opportunity cost is given by the marginal utility of aggregate
consumption, V,;. In the second-best, see equation (22), the planner also accounts for the fiscal costs
associated with a reduction in consumption. At any time ¢t > 0, the shadow cost of the consumption
good is given by V.; x MCF;, hence the opportunity cost of abatement is higher than in the first-
best if and only if the MCF is above 1. Tax distortions also affect the marginal benefits of pollution
abatement through the valuation of future production damages. In particular, when the MCF decreases
over time, tax distortions operate as a form of discounting: consumption is valued relatively more in
the present than in the future, hence future production damages receive a lower weight than in the
first-best Pigouvian rule. Put differently, in this case, taxing in the present is more costly than taxing

in the future. We show in Appendix A.5 that the ratio of MCFs can be expressed as

MCF;y; L

MCF, — MR

from which we see that the MCF is constant if the capital tax is null for all future periods. Thus, as in
Barrage (2020), the optimal tax on production damages is not distorted as long as, going forward, the
capital income tax is optimally set to zero. Intuitively, in this situation, tax distortions affect future
marginal abatement benefits proportionally to current marginal abatement costs. Production damages

are then perfectly internalized, and the optimal pollution tax can be expressed as

Pigou,U
Pigou,Y TE’t SB
TEL = Tpy . + —MCFt

In this case, optimal carbon taxes are affected by the MCF in proportion to the share of utility damages.

Proposition 2 additionally provides an expression for the MCF as a function of the covariance
between 6; and Z.;, see equation (23). The first term, 6;, represents the shadow cost for the planner
of providing an additional unit of lump-sum transfer to agent ¢. While 6; is zero on average at the
optimum, in the typical case where the government wishes to redistribute from rich to poor agents,
0; is positive for the rich and negative for the poor.'® The second term, Z.;:, represents how the
difference between a household’s current consumption expenditure and labor income changes when
more resources are available for consumption. We show in Appendix A.5 that this term is in fact
driven by two mechanisms: a volume and a price effect. When fewer resources are used for pollution

abatement, consumption increases, and labor supply adjusts, which also affects prices and wages. When

15 As shown in Appendix A.4.2, with balanced-growth preferences,

iAo A ,

0; = Z Tty —, Vi
e

The ratio \;/p; captures how much the planner values agent i relative to the market; 6; is the difference between this

ratio and its population average. It is negative when the planner values the agent more than the market does. Since the

market weight, ¢;, reflects how rich the agent is (in present value), a redistributive planner assigns higher ratios to poorer

agents and lower ones to richer agents, yielding negative 6; for the poor and positive for the rich.
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households have balanced-growth preferences and the IES is equal to 1, these two effects exactly offset
each other, such that the present value of resources necessary to satisfy households’ budget constraints
remains unchanged. In this situation, taxing pollution does not affect the implementation costs that
result from distortionary taxes; the MCF is equal to 1, and the second-best tax is exactly Pigouvian.
When the IES is below 1, the price effect dominates, and an increase in aggregate consumption reduces
the total amount of transfers needed to satisfy agents’ implementability constraints. If, at a particular
point in time, these changes are heterogeneous across households and correlate with their type, the
MCF differs from 1.

From the households’ implementability conditions, we have that

)

> NB'Tiy = Ueo(Roaip + T),

t=0
and it follows that, with no initial wealth inequality (or equivalently, with full expropriation of initial
wealth), the discounted sum of Z;; is invariant across types. Intuitively, with a uniform lump-sum
transfer and no wealth inequality, the discounted sum of expenditures minus labor income must be the
same for everyone. We show in Appendix A.5 that this condition implies that with balanced-growth
preferences, the covariance term in (23) averages to 0 over time, see equation (24). Hence, the MCF is
on average equal to 1, and the optimal pollution tax is on average equal to the Pigouvian level.'® Still,
in any period t > 0, the MCF may differ from 1, and hence temporary deviations from the Pigouvian
principle may occur. In particular, we show in Appendix A.5 that with balanced-growth preferences,
the covariance is positive when TES is below 1 and aggregate labor supply is high relative to its long-
run value. In this situation, increasing aggregate consumption makes it relatively easier to satisfy the
budget constraint of richer agents for whom transfers are costly for the planner (6; > 0), hence the
opportunity cost of pollution taxation is higher because of fiscal motives, the MCF is above 1, and the

optimal tax is (temporarily) below the Pigouvian level.

The role of inequalities When the MCEF is 1, the first- and second-best tax formulas coincide, and
they are both equal to the social cost of pollution. Still, the actual tax levels may differ: because
individualized lump-sum transfers are not feasible in the second-best, even with optimal redistribution
there is some residual inequality. It is this inequality that affects the welfare gains from leaving more
resources available for agents’ consumption by decreasing the pollution tax. The effect of this residual

inequality on the optimal pollution tax depends on the curvature of agents’ utility function.”

Y5 This result is related to Jacobs and de Mooij (2015), who, using a different definition of the MCF (see footnote 14),
show in a static model that the MCF is equal to 1 provided the government optimizes a lump-sum transfer. Consequently,
tax distortions do not call for a lower pollution tax. Kaplow (2012) also argues that concerns about distortionary effects
from taxes on labor supply are independent of the question of how to tax externalities. According to Proposition 2, a
similar logic holds on average in dynamic environments as well.

"In addition, the presence of distortionary taxation affects the path of aggregate variables, and thereby the level of

environmental taxes.
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Proposition 3 The social cost of pollution from wutility damages is inversely related to the social
marginal utility of consumption V.. If agents have balanced-growth preferences, V.; can be expressed

as
Cit
Ver = E TNt + COV(/\z‘Uc,z',t, —c’ ),
- t
KA

and holding aggregate variables constant, consumption inequalities affect V., in two opposite ways: i)
they increase it by increasing the average value of households’ marginal utility of consumption, and ii)
they reduce it because a larger share of additional consumption, c;t/ct, is attributed to households with
lower marginal utilities of consumption, uc;;. If the IES is equal to 1, the two effects exactly offset

each other and consumption inequalities do not affect the pollution taz.

The proof of Proposition 3 is provided in Appendix A.5. In the presence of inequalities, an increase
in aggregate consumption is valued more to the extent that households’ marginal utilities are higher
on average (by convexity of the marginal utility function), but it is valued less to the extent that the
increase in consumption disproportionately goes to richer households with lower marginal utilities. An
increase in the pollution tax reduces every households’ consumption proportionally. When the IES is
equal to 1, the planner is indifferent between a proportional increase in consumption for a rich or a
poor agent, so inequalities do not affect the planner’s marginal valuation of aggregate consumption.'®
When utility is more concave, the first mechanism becomes relatively stronger and inequalities lead to
a higher social marginal utility of consumption, thereby increasing the opportunity cost associated with

raising pollution taxes. Hence, if the IES is below one, inequality lowers the optimal pollution tax.

4 Calibration

In this section, we explain how we calibrate the model to explore quantitatively the implications of
heterogeneity in productivity for the optimal taxation of carbon, capital income, and labor income.
Because fiscal policy is typically decided on at the national level, we calibrate the economic features
of our model based on one country. We assume that country takes into account the global impact
of its emissions, leaving strategic considerations aside. Specifically, our baseline calibration adopts
the economic features of the US and the climate model from DICE-2016. For consistency, we scale
the economy so that output and emissions match global data. The objective is to determine how an
economy with important inequalities and responsible for a significant share of global emissions like
the US should design its fiscal system to internalize the global effect of its externalities under the

assumption that global emissions are proportional to its emissions.'?

811 the simpler case where agents have logarithmic utility on consumption only, it is straightforward to see that the
distribution of households’ consumption has no effect on the planner’s valuation of a proportional increase in all agents’

consumption:

Zm)\iln((l +z)e) — Zﬂ'i)\iln(ci) =In(1+ z).

19US GDP is roughly one-quarter of world GDP. So, having matched world GDP, we set the initial population to
that of the US multiplied by four, in order to also match US GDP per capita. We then separately calibrate emissions to
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4.1 Climate model

The calibration of the climate model is based on the 2016 version of DICE, presented in Nordhaus
(2017). The initial period is 2015, and each period lasts 5 years. The climate model is composed of

three sets of equations describing the carbon cycle, radiative forcing, and climate change.

Carbon cycle The carbon cycle is represented by three reservoirs. S{“, StU P and S}° represent the
level of carbon concentration in the atmosphere, the upper oceans and biosphere, and the deep oceans

respectively. These stocks evolve according to the following laws of motion:
ST =bo (BN + B+ bijSiog,
i=1

where the three reservoirs j € {At,Up, Lo} are ranked as above and with E*"d denoting exogenous
land emissions. The coefficient by ; is 1 for the first reservoir, SAt and 0 for the others: industrial and
land emissions directly flow into the atmosphere, and later affect the other two reservoirs through the

communication between the carbon stocks captured by the parameters b; ;.

Radiative forcing The accumulation of carbon in the atmosphere increases radiative forcing, i.e.

the net radiation received by the earth. This mechanism is captured by the following equation
Fi = r(In(S/Sivs0)/In(2)) + F7.

where F£* is exogenous forcing. A positive radiative forcing means that the earth receives more energy

from the sun than it emits back to space, and hence the climate warms.

Climate change The temperature is modeled through two equations for the mean temperature

change of the atmosphere (Z;*) and deep oceans (Z}°) that interact as follows
ZM = Z0 + G (F = G2 - Gz - zE2)),
7} = 28 + G2 - Z[0).

All the parameters of the climate model are taken from DICE-2016, and reported in Table VI in
Appendix G.

match global levels. One interpretation is that the world economy consists of a single global economy, equivalent to four
US economies, setting income and climate taxes to address US-like inequality and global climate change (Figure 21a in
Appendix H.4 shows how our results vary with inequality). Alternatively, and equivalently, our preferred interpretation
is that the model describes the optimal policy for the US under the assumption that the rest of the worlds emissions are
proportional to its own, and that global damages are internalized as if they affect others analogously to how they affect
the US. This is consistent with treating each unit of US emissions as scaled to the global level, with global-level damages

then taken into account.
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4.2 Damages

We also model production damages as in DICE-2016, with
D(Zt) = ath + CLQZta3, (25)

We assume that D(Z;) is a simple quadratic function with a3 = 0 and az = 2. The relevant Z; that
enters this formula is the atmospheric temperature change, Z/*. Since DICE does not distinguish
between production and utility damages, we follow Barrage (2020) to decompose the damages from
DICE into a production and a utility component. We apply her decomposition and assign 74% of
damages at 2.5°C warming to output, and 26% to utility. This provides an adjusted value for the
parameter ay in equation (25) relative to DICE and enables us to calibrate utility damages, specifically,
the preference parameter o described below.

To examine to what extent our results depend on the underlying SCC, which could depend on
the choice of climate model, we also consider an alternative “high damage” specification. Instead of
assuming quadratic damages, we consider a cubic function (a; = 0, a3 = 3) and we adjust the coefficient
as such that damages are identical to the baseline scenario at current warming. This high damages
scenario therefore assumes that the damage function in DICE correctly captures current damages but
underestimates damages at higher levels of warming because of the high uncertainties surrounding the

impacts of climate change at these higher temperatures (see e.g., Weitzman, 2009; Pindyck, 2013).

4.3 Households

We assume households have balanced-growth preferences as defined in (21) with utility damage from

temperature increases given by
(14 apz2) "

1—0

a(Z) =

)

as in Barrage (2020). Using market weights, the intertemporal aggregate utility can be written as

(ar(1— ght)V)lfa L (1 + ato)_(l_”)>

1—0 1—0

> BN (i, ha, Zi, ) = ZﬁtNt(
t t

with I' = ), m¢;, and where Z; = ZA is the atmospheric temperature change (see Appendix A.4.1).
To ensure that aggregate emissions remain consistent with DICE, we calibrate the growth rate of
population accordingly. Because we also want to match the GDP per capita of the US, we set the
population levels as US population multiplied by the ratio of world GDP to US GDP in 2011-2015, the
first period of the model.

Following DICE, we set the discount factor to 8 = 1/(1 + 0.015) per year, and the inverse of the
IES to o0 = 1.45. The parameters v and ¢ are set in order to match a Frisch elasticity of labor supply
of 0.75 (see Chetty et al., 2011) and an average per capita labor supply of hog15 = 0.277 in the initial
period (computed from the Survey of Consumer Finances, see Appendix G.4).

We calibrate the ability distribution on the basis of hourly wage data that we obtain from the Survey
of Consumer Finances (SCF). To be consistent with the initial period in DICE (2011-2015), we use the
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SCF 2013. We divide the sample of working households into ten groups of hourly wage deciles (i.e.,
I =10, and for all 4, m; = 0.1), with an hourly wage of $6.44 for the bottom productivity group and
$101.35 for the top productivity group, and normalize productivity levels such that ). me; = 1. The
full procedure is described in Appendix G.2. While we calibrate productivity levels directly instead of
targeting a specific ex post distribution, the model correctly predicts consumption inequalities, with a
consumption Gini of 0.33, very close to the value of 0.32 observed in the data (see Heathcote et al.,
2010). Thus, although our model abstracts from idiosyncratic income risk, we still correctly capture

lifetime economic inequalities.

4.4 Production
We model production using a Cobb-Douglas technology for both sectors. We have
F(K1e, Hye Be) = K§'yHy  ° 7V EY,
with o = 0.3, and v = 0.04 (from Golosov et al., 2014), and
G (K, Hay) = Ky “PHSE,

with ap = 0.403 (from Barrage, 2020). The initial total factor productivities A; 2015 and Az 2015 are set
such that output in sectors one and two match world GDP (2011-2015 average from the World Bank)
and aggregate industrial emissions (from DICE-2016) respectively, and their growth rate are taken from

DICE-2016.2° Our abatement cost function is also taken from DICE, with the following specification

O(ut, Ey) = c1 4 By,

where ¢ ¢y = PtbaCkStOp represents the backstop price, 4.e. the price at which it becomes economical

to abate 100% of emissions. As in DICE-2016, we assume that this price is 550$/tCOq in the initial
period, and declines at a rate of 0.5% per year. We also set the exponent co = 2.6 as in DICE.

4.5 Government

We set the tax rates on capital and labor income in line with effective rates computed by Trabandt and
Uhlig (2012), at 7 = 0.411 and 7y = 0.255 in our baseline (see Appendix G.1). We follow Barrage
(2020) and set the intermediate-goods tax to 7; = 0. The tax on carbon emissions, 7z, is set at a level
so that, in our calibrated economy, 3% of total energy is obtained from clean technologies (Nordhaus,
2017). This requires 75 = 2.01$/tCOz2 in 2015.

To calibrate initial, outstanding debt By at the start of the economy, we calculate the difference
between total liabilities and financial assets from the US government’s balance sheet, both as a per-

centage of GDP.2! Following Barrage (2020) and in order to facilitate reproducing results for other

20Ty calibrate the initial values of K o and Kz, we assume that the economy is in a balanced-growth path in which

temperature remains constant at the current level.
2The numbers are calculated at the “General Government” level. We also explore the sensitivity of our results to

different levels of initial government debt.
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Figure 1: Optimal Income Taxes.

Notes: Figures show the path of second-best labor and capital income taxes for the baseline calibration. Initial tax rates

(for 2015) are set exogenously to their current levels obtained from Trabandt and Uhlig (2012).

countries, these data are obtained from the IMF Government Finance Statistics. This gives an average
debt-to-GDP ratio of approximately 111% over the period 2011-2015.

Turning to government spending, in our model G; denotes government consumption, while 1" cap-
tures the present value of all lump-sum transfers. To better align the model with the data, we follow
Barrage (2020) and split total government spending into final good spending G, and exogenous trans-
fers GI'. The total transfers that households receive consist of the exogenous component, G}, and the
endogenous component, 7. As in Barrage (2020), empirical counterparts of Gtc and G! are obtained
from the IMF Government Finance Statistics. The initial value of government consumption, GOC , is
15.8% of GDP, while the exogenous transfers, G{, are set at 14.5% of GDP. See Appendix G.1 for
details.

5 Quantitative results

We now present the optimal policy obtained under a utilitarian welfare criterion (i.e., \; = 1 for all 7),
and the associated welfare effects compared to a climate-skeptic planner scenario in which the planner

ignores the anthropogenic origin of climate change and consequently sets the carbon tax to zero.??

5.1 Optimal policy

Optimal tax paths Figure 1 shows the path of optimal taxes on capital and labor income in our
baseline scenario. Compared to their calibrated levels, the labor income tax roughly doubles in the first
period, from 25% to about 50%, and stabilizes at this level. Rebating the revenue from these taxes

via lump-sum transfers achieves most of the redistribution implied by the optimal tax system. Because

22Details on the algorithm used to compute the Ramsey policy can be found in Appendix I.
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Figure 2: Carbon Taxation.

Notes: (a) Figure shows the path of second-best carbon taxes for the baseline calibration expressed in dollars per ton of
COg2. The initial level (for 2015) is set exogenously to its current level obtained from Nordhaus (2017). (b) The black
line represents the second-best carbon tax normalized to 1. The red line shows what this tax would be if the MCF was
set to 1 in all periods, holding aggregates constant (see Proposition 2). The blue line shows what this tax would be
absent consumption inequalities, again holding aggregates constant (see Proposition 3). All taxes are computed under the

baseline calibration.

lump-sum transfers are available and there is no initial wealth inequality, the only reason to tax capital
income is to mitigate intertemporal distortions associated with labor income taxation. Since optimal
labor income taxes are close to constant, the optimal capital income tax converges to zero quickly after
the second period.?? Appendix E examines scenarios with further constraints on policy instruments

leading to deviations from this result.

Figure 2a shows the optimal path of carbon taxes: in the baseline scenario, the tax starts at
21.7$/tCO2 in 2020 and goes up to reach 229.2$/tCO2 a century later. These tax levels are consistent
with the ones found in Barrage (2020) and Nordhaus (2017, 2018), but are too low to contain climate
change to a level consistent with the +2°C objective of the Paris Agreement. In the “high damages”
scenario, introduced in Section 4.2, it is optimal to stay close to the Paris objective. Then, the optimal
income taxes remain almost the same, while the carbon tax is roughly four times as large (see Appendix
H.1).

Carbon tax decomposition Figure 2b shows the implications of tax distortions and inequality on

optimal carbon taxes, for given paths of aggregate variables.?* The black line plots the second-best

2 Notice that, because the government has access to lump-sum taxes, the reason for zero long-run capital income
taxation is different from the usual Chamley (1986) and Judd (1985), and is not subject to the criticism in Straub and
Werning (2020).

2476 focus exclusively on the effects of tax distortions and inequality, we thus abstract from differences in the size of
the economy between first-best and second-best. Put differently, our focus is not on comparing the optimal carbon tax
in a first-best versus a second-best world. Rather, we are interested in assessing how far off a planner would be if they

applied the first-best formula—thus ignoring the role of inequality and tax distortions—in a second-best setting.
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pollution tax, normalized to 1. The red line, in turn, shows what the pollution tax would be if the MCF
is set to 1 in each period. This level corresponds to the SCC. Recall from Proposition 2 that the MCF
is 1 on average. As it turns out, temporary deviations of the MCF from unity play an insignificant
role: the second-best carbon tax is initially only 0.5% below the SCC, a difference that becomes even
smaller in subsequent periods. Thus, even in the presence of distortionary taxation, it is optimal to
set the carbon tax approximately equal to the SCC in every period (i.e., at the Pigouvian level). This
result contrasts with Barrage (2020), who, in a representative-agent setting, finds that the MCF exceeds
one, which leads to optimal carbon taxes lower than the SCC.?> The reason is that in her model, the
government has to rely on distortionary taxes to generate revenue. By contrast, in our framework, the
government optimally chooses to levy distortionary taxes for redistributive purposes. Tax distortions

do not call for deviations from the SCC to the extent that they are used to provide redistribution.

To study the role of inequality, the blue line plots what happens to the carbon tax when we
abstract from household inequality (7.e., with all households’ consumption and labor supply equal to
the aggregate values). The discrepancy between the blue and red lines indicates the degree to which
inequality matters for optimal carbon taxes, through its impact on the SCC. The SCC is determined
by the trade-off between reducing damages and increasing aggregate consumption. As explained below
Proposition 3, the residual inequality that remains after redistributive taxes have been optimized raises
the value of increasing aggregate consumption if o > 1. With o = 1.45, ignoring inequality leads to an
SCC that is on average 3.9% higher over the next century. Hence, taking inequality into account has

a moderately negative impact on optimal carbon taxes.

Role of lump-sum transfers A potential explanation for why the MCF has such a small impact
on optimal carbon taxes in our setting is that the government has access to a non-distortionary source
of revenue. Perhaps surprisingly, this is not the case: with inequality, the MCF is close to 1 even if we
remove the planner’s ability to adjust lump-sum transfers. To make this point clear we consider the
following two experiments. In the first, we shut down inequality and the ability of the planner to change
the level of lump-sum transfers. Our setting then simplifies to a representative-agent environment and
the experiment confirms the main results obtained in Barrage (2020). Figure 3a shows the effect of the
MCF, which is sizable when compared to our benchmark results; tax distortions call for lower carbon
taxes. We also show how the results change when we vary the amount of fiscal pressure by reducing
the initial level of net government debt to zero (light-shaded lines), and by doubling the benchmark
value (dark-shaded lines). Naturally, the MCF calls for a larger reduction of carbon taxes when fiscal

pressure is higher.

In the second experiment, we maintain the constraint that the planner cannot adjust lump-sum

transfers but reintroduce labor income inequality. Figure 3b shows that, unlike in the representative-

ZSpecifically, Barrage (2020) finds that, in the 21%° century, optimal carbon taxes are about 8% lower when there
are distortionary taxes. Unlike our approach, which compares formulas evaluated at the same allocation, this number
also reflects residual differences in aggregates after the economy is re-calibrated to resemble the second-best setting more
closely. Figure 2 of Barrage (2020) suggests that the majority of this effect is driven by differences in the MCF, especially

in earlier periods.
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Figure 3: Fixing Lump-Sum Transfers.

Notes: The black line represents the second-best carbon tax normalized to 1. The red lines show what this tax would be
if the MCF was set to 1 in all periods, holding aggregates constant. The blue lines show what this tax would be absent
consumption inequalities, again holding aggregates constant. All taxes are computed under the baseline calibration except
for the fact that for the light-shaded lines we reduce the initial net government debt to zero, while for the dark-shaded

lines, we double the benchmark value.

agent case, the effect of the MCF is reduced to virtually zero—similarly to the benchmark results from
Figure 2b. The reason behind this perhaps surprising result is that preventing the government from
adjusting the level of lump-sum transfers affects the level of tax distortions only to the extent that this
constraint is binding. In the representative-agent economy, the planner would optimally want to set
the endogenous transfer T} to a large negative value, such that the total lump-sum tax —(G} + T})
finances all its exogenous spending with income taxes optimally set to zero. Imposing T; = 0, for all
t, therefore has a large impact on the amount of tax distortions. With inequality, the planner would
optimally choose to provide lump-sum transfers for redistribution, hence the constraint over T} is less
binding. In our benchmark, it happens to be optimal to keep lump-sum transfers, G7 + T}, close to
their calibrated level, G}, hence the constraint that the planner cannot adjust lump-sum transfers is
hardly binding. Notice, however, that even with the substantial changes to fiscal pressure associated
with eliminating or doubling net government debt, the effect is still subdued. The effect of the MCF
can even flip sign when meeting the necessary revenue actually requires lower income taxes compared
to what an unconstrained planner would choose. This happens if net government debt is set to zero,
in which case ignoring the MCF leads to a small reduction in carbon taxes: see the light-shaded curve
in Figure 3b. Finally, notice that the effect of inequality relative to the effect of the MCF, as captured

by the distance between the blue and red lines, is fairly robust to changes in fiscal pressure.

Sensitivity to calibration choices The level of government expenditures does not significantly af-
fect the results. When choosing government expenditures such that current taxes are sustainable—at
22.5% instead of 30.3% of GDP-—the effects of the MCF and inequalities are unaffected. In Ap-

pendix H.1, we also show that with a more severe calibration of climate damages leading to an SCC
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about four times higher, the role of the MCF remains negligible while the effect of inequalities decreases,
to 2.6% instead of 3.9% in our baseline. This lower value is due to the lower share of utility damages
at lower levels of warming (that result from higher carbon taxes). Figure 21b, in Appendix H.4, illus-
trates this intuition: the figure plots the effect of inequalities on the optimal carbon tax for alternative
values of the share of utility vs. production damages. When climate change impacts production only,
inequalities have no effect on the optimal carbon tax. In line with Proposition 2, as the share of utility
damages increases, the effect of inequalities rises, although at a decreasing rate. For instance, if 10%
of damages were directly impacting utility at 2.5°C warming instead of the 26% from the baseline, the
effect of inequalities on the carbon tax would be 1.8% instead of 3.9%. If the share of utility damages
was 40%, the effect of inequality would increase to 5.2%.26 Finally, we also consider different levels
of income inequality (see Figure 21a in Appendix H.4). The effect on the optimal carbon tax appears
relatively linear: it would be twice smaller if inequalities were twice lower than currently observed in
the US.

As highlighted in Proposition 3, the effect of inequalities is sensitive to the value of o, which in
our dynamic framework with heterogeneous agents captures both the IES and the degree of inequality
aversion of the planner. Figure 21c in Appendix H.4 plots the effect of inequalities on the optimal
carbon tax for different values of 0. As stated in Proposition 3, the effect is null when ¢ = 1. For
higher degrees of inequality aversion, however (i.e., higher values of o), the effect goes up non-linearly:
with o = 2, inequalities reduce the optimal carbon tax by 16.2%, instead of 3.9% with our baseline
value of 0 = 1.45 taken from DICE. So, credible alternative calibrations could lead to stronger effects

of inequality.

5.2 Fiscal adjustments relative to a climate-skeptic planner

Table I below reports the adjustments made to the government budget between our baseline scenario
and a “climate-skeptic” planner scenario in which the planner ignores the anthropogenic origin of climate
change. Specifically, this climate-skeptic planner sets all taxes optimally but behaves as if the climate
variable were exogenous and not driven by human-made emissions. The objective of this experiment
is to see how the planner should adjust the fiscal system once it acknowledges the necessity to address
climate change. As shown in the table, the additional revenue provided by the carbon tax is split about
equally between reducing distortionary taxes, with the present value of the labor tax decreasing by

P.27,28

0.7% of GDP, and increasing transfers, whose present value increases by 0.8% of GD Intuitively,

26Cruz and Rossi-Hansberg (2021) estimate climate damages on productivity and amenities, and find that in the long
run, up to half of the damages impact utility directly through amenities (in which case the effect of inequalities would
go up to 5.9%). In the short run, direct utility damages represent a smaller share, more consistent with our calibration

obtained from Barrage (2020).
2"The —0.3% change in government consumption expenditures reported in Table I results from the effect of carbon

taxation on the present value of GDP since the expenditures are exogenous.
%8 This result echoes the recent findings of van der Ploeg et al. (2022), who argue that rebating carbon taxes using

a combination of higher transfers and lower income taxes is most effective in garnering public support. Fried et al.
(2024) study the optimal recycling policy for an exogenous carbon tax introduced in a sub-optimal tax system and find

that two-thirds of the carbon tax revenue should be used to reduce taxes on capital income and one-third to provide
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because labor taxes and transfers are optimized, it is optimal to use the revenues from carbon taxation
to both reduce labor taxes and raise transfers, rather than doing only one of these. This finding violates
the weak double-dividend hypothesis (for a review, see Goulder, 1995), according to which it is optimal
to use the proceeds of the carbon tax exclusively to reduce distortionary taxes. With heterogeneous
agents, distortionary taxes serve a redistributive purpose, hence it is not desirable to reduce them unless
additional transfers can be provided through other means. This result also gives some grounds to the
popular carbon tax and dividend policy (see the Economists Statement on Carbon Dividends, Akerlof
et al., 2019) that calls for redistributing the proceeds of the tax via lump-sum transfers to address
redistributive concerns—although we find that only half of the tax revenue should serve that purpose,

the rest being aimed at improving economic efficiency.

Table I: Government Budget Adjustment.

Revenue Source Revenue Use

Labor Capital Carbon Gov. Cons. Transfer Interest

No Carbon Tax 33.5% 0.6% 0.0% 17.2% 14.6% 2.3%
Optimal Carbon Tax 32.9%  0.6% 1.2% 16.9% 15.4% 2.3%
Change —0.7% 0.0% 1.2% —-0.3% 0.8% 0.0%

Notes: Numbers represent the present value of each component of the government budget constraint divided by the
present value of GDP, in the scenarios without carbon taxes (first row) and with carbon taxes (second row). The third

row displays the difference between the two scenarios.

5.3 Welfare effects

Figure 4a displays the percentage increase in consumption that would be necessary in the climate-skeptic
scenario to make households as well-off as in the optimal scenario in each decade and for each produc-
tivity group. The average inter-temporal gains are positive for all productivity groups—the average
discounted gain is 5.8% with baseline damages.?? However, the period welfare gains, which determine

how different generations are affected, are heterogeneous over time and between groups. Overall, welfare

redistribution.
2The comparable number in Barrage (2020) is about 1%. Within this century, our period welfare gains are of similar

magnitude but begin to diverge afterward. These differences stem mainly from assumptions about carbon taxation in
the next century. Specifically, Barrage (2020) states that “carbon taxes are allowed after 2115 so as to keep the analysis
in an appropriate range for the (smooth) damage function,” which limits the business-as-usual temperature increase to
4.3 degrees. In contrast, we keep carbon taxes at zero until 2240 (see Appendix I), resulting in temperature increases
exceeding 12 degrees by then (see Figure 11). This leads to larger welfare effects, amplified by convex damages and
rising consumption levels due to economic growth—which increases the consumption value of improved climate, a luxury
good under additively separable preferences. While such long-run projections warrant caution (the IPCC typically limits
projections to 2100), their welfare implications can be substantial. Accordingly, our 5.8% average welfare gain should be

interpreted with caution, while near-term period welfare gains in Figure 4 are more reliably estimated.
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gains increase dramatically after the 215 century.3? While they are initially progressively distributed,
this pattern eventually reverses. The reason why the optimal carbon tax is progressive initially is that
the revenue gains from carbon taxation are rebated through both a higher lump-sum transfer and a
reduction in the labor income tax rate (see Table I). The overall progressivity of the tax system in-
creases, which makes poorer households benefit more from the initial increase in carbon taxes. In the
long run, richer households are the ones who benefit more from carbon taxation. A significant share
of the welfare gains from lower temperatures comes from reduced utility damages. Richer households
care relatively more about those damages in the sense that, since the IES is below 1, they are willing
to give up a higher share of their consumption for a reduction in temperature. This explains why, in
the long run, the welfare gains from carbon taxation are regressive. It is worth emphasizing that this
exercise abstracts from heterogeneity in climate damages, an extension that we theoretically investigate
in Section 6.3.
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Figure 4: Period Welfare Gains (%).

Notes: For each decade and each income decile the table shows the welfare gains, in percentage of consumption, of
moving from a scenario without carbon taxation and otherwise optimal income taxes to: (a) optimal carbon and income
taxation accounting for inequality; (b) carbon taxes set to the SCC and extra revenue used to reduce labor income taxes.
Numbers are computed under the baseline calibration. The large welfare gains in the 22°¢ century reflect the fact that,
as consumption levels grow and environmental quality declines, households are willing to give up more consumption to

prevent an increase in temperature.

To better understand the benefits of combining optimal carbon taxation with optimal income tax-
ation, we present, in Figure 4b, the result of another experiment. Starting again from the optimal
policy of a climate-skeptic planner, we set carbon taxes to the SCC, ignoring inequalities, and we use
all additional revenue exclusively to reduce distortive labor-income taxes—following the prescription
associated with the double-dividend hypothesis. In this case, the policy is regressive from the begin-
ning with poorer households bearing the bulk of the costs associated with the introduction of carbon

taxation. These results may illustrate why carbon tax policies are often considered unpopular because

30 As shown in Dietz et al. (2021), the DICE-2016 model features relatively high thermal inertia, i.e., the temperature
response to an impulse in emissions is delayed compared to what climate science models predict (note that this issue was
addressed in the updated version of the model, DICE-2023, see Barrage and Nordhaus, 2024). If this response was more

immediate, welfare gains from carbon taxation could become positive earlier.
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of their potentially regressive effects.3! Our results indicate that combining the implementation of
carbon taxation with an appropriate increase in the progressivity of the tax system can, therefore, be
important for a more equitable sharing of the gains from carbon taxation. Then, even though these
gains disproportionately benefit future generations, the optimal carbon tax policy still benefits poor
households in the present, which could make the policy more attractive to a government concerned

with redistribution and increase public support in the first stages of the policy implementation.3?

6 Additional sources of heterogeneity

In this section, we study the effects of introducing additional sources of heterogeneity. We consider, in

turn, inequality in wealth, energy demand, and sensitivity to environmental damages.

6.1 Initial wealth inequality

With inequality in initial asset holdings, if the planner is allowed to set the tax on capital income in the
first period, it is optimal to fully expropriate initial wealth (provided that less productive households
are also less wealthy). To study the implications of wealth inequality on optimal fiscal policy, we
therefore assume that the planner is unable to set the capital income tax in the first period, i.e. Tk
is exogenous. We discuss the optimal rules and investigate the quantitative effects given the levels of
wealth inequality observed in the US. In Appendix B.1, we also discuss the implications of initial wealth

inequality for the time-consistency of Ramsey policies.

6.1.1 Optimal tax rules

For t > 1, the optimal tax rules are not affected by the presence of initial wealth inequality.®> However,
if 7o cannot be chosen to eliminate initial wealth inequality, there is another reason for deviating from

Pigouvian taxation in period 0. Let A denote the shadow cost of wealth inequality,
A= Z mﬂiai,o,
i

then, the optimal period-0 pollution tax is given by (see Appendix B.6):

1 (&
TE,0 = _1/1 ; ( B] (Vl,jD;'Al,ij - NjWZ,j) JEéW,j - N()UC,OA (1 - TK70) D()ALOFK,OJE(%W,O)’ (26)
’ j:0

31The French Yellow Vests movement offers a good example: following the double-dividend strategy, the French gov-
ernment simultaneously increased the carbon tax while reducing taxes on capital and labor. Concerns about the impact
on the purchasing power of (poor) households led to massive social unrest and the ultimate withdrawal of the planned

carbon tax increases (see Douenne and Fabre, 2022).
32Goulder et al. (2019), among others, argue that carbon taxes can have progressive effects even with revenue recycled

through labor income taxes, as inflation indexing raises real transfers for lower-income households. In our model, which
abstracts from nominal rigidities, this effect is captured directly through an explicit increase in real transfers.
33The exception is the tax rule for 7x,1. See Appendix B.5 for details.
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where

v1,0 = Weo — UccoRoA (27)

is the planner’s multiplier on the aggregate resource constraint.

Notice that wealth inequality, through A, affects pollution taxation in period zero via two mecha-
nisms: (1) it leads to an additional term, the last one in equation (26); and (2) it affects the planner’s
valuation of a unit of consumption in period 0. First, the additional term has to do with the fact that
higher damages reduce interest rates, which, as a side-effect, mitigates wealth inequality, calling for
lower pollution taxes. This is a very subtle effect and quantitatively this term is small. Second, the
effect on vy g is a result of the fact that we do not allow full expropriation of initial wealth, which could
be achieved by increasing 7x ¢ so that Ry = 0. We instead fix 7x o, which is equivalent to having the
planner expropriate all initial wealth and then partially returning it to each household. When more
productive households have higher wealth, this is costly for the planner, so A > 0. The opportunity
cost of abatement, given by vy, is then higher to the extent that reducing aggregate consumption
exacerbates the cost of initial wealth inequality by increasing the consumption value of initial wealth—
see equation (27). This effect leads to a substantial reduction in period-0 pollution taxes. Similarly to
inequalities in productivity, wealth inequalities reduce the optimal pollution tax, although the effect is

concentrated in the first period.

6.1.2 Quantitative analysis of the effect of wealth inequality

We calibrate the joint distribution of productivity and initial wealth using data from the SCF. We
divide households into 10 productivity groups, and 10 wealth groups within each productivity group,
for a total of 100 different groups of equal size. The full procedure is described in Appendix G.3. We

fix T o to be at the same level as in the current tax system, at 41.1%.

Figure 5 below provides a decomposition similar to the one shown in Figure 2b above.?* Wealth
inequalities call for a significant reduction of the optimal tax in the first period (green line). This effect
is fully driven by the second mechanism described above, i.e. the higher value to the planner of an
extra unit of consumption in period 0, v1 9. To mitigate the negative impact on productive efficiency,
the large temporary decrease in the optimal carbon tax is accompanied by an equivalent increase in
the energy tax, 77. Despite the large impact of wealth inequality on carbon taxes in the initial period,
the effects of tax distortions (red vs. green) and consumption inequalities (blue vs. red) remain very

similar to the baseline in subsequent periods.

34 Appendix H.3 includes figures for the optimal path of income and carbon taxes with initial wealth heterogeneity when
the initial capital tax is fixed at its current level. The appendix also contains a table showing the government budget
adjustments made relative to the climate-skeptic planner and a figure that displays the distribution of the lifetime welfare
gains for each of the 100 groups. These gains are U-shaped with respect to income, but strictly increasing with initial

wealth.
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Figure 5: Carbon Tax Decomposition, Initial Wealth Heterogeneity and Exogenous Initial Capital Tax.

Notes: The black line represents the second-best carbon tax normalized to 1. The green line shows what this tax would
be without wealth inequality, holding aggregates constant—more precisely, it shows what happens to 7+ in equation (26)
if A is set to zero. As in Figure 2b, the red and blue lines display the effects of the MCF and inequalities respectively,

relative to the green line. All taxes are computed under the baseline calibration.

6.2 Energy consumption inequality

A key concern regarding the distributional impact of carbon taxation is that households’ energy budget
shares differ, both between and within income groups (see e.g., Pizer and Sexton, 2019). To explore
this issue, we now introduce into our benchmark model a second dirtier consumption good and hetero-

geneous preferences over this good.

Two-goods economy Formally, we assume that a household of type ¢ derives utility from the con-
sumption of a final good ¢;;, a dirtier good d; ¢, labor supply h; ¢, and environmental degradation Z;
according to a utility function .

Z NifB'ui (city dig, hits Zt) 5

t=0
where the second dirtier good, d;;, is produced with a linear technology that uses energy as its only
input. For simplicity, we assume that energy produced in the energy sector, Fy, is now used in the final

good sector or directly consumed by households, such that
E; = B4 + Nydy,

with 1 ; denoting the quantity of energy used as an input in the final good sector and dy = ), m;d; + the
households’ per capita energy consumption. In order to match empirically observed budget shares for
energy for different income groups, we assume households’ utility can be represented by the following

period utility function,

(cia(dig — dig)(1 = §hz',t)7)l_g

l1—0

wi (i digs hiy Zy) = +a(Zy). (28)
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Thus, in line with previous studies in this literature (e.g. Fried et al., 2018; Klenert et al., 2018;
Aubert and Chiroleu-Assouline, 2019; Jacobs and van der Ploeg, 2019), preferences for consumption
are modeled with a Stone-Geary utility function, so that an agent of type i experiences positive utility
from energy consumption only after consuming its first d; ; units of energy. Therefore, d; denotes the
subsistence consumption level of energy for an agent of type 4, which we allow to be type-specific. This
specification allows us to consider households with non-homothetic preferences to better capture the
heterogeneous impact of pollution taxes on households’ budgets. Assuming type-specific values for d;,
this specification also allows us to potentially consider non-linear aggregate Engel curves as well as

horizontal heterogeneity.3-36

With an additional consumption good, we assume the planner uses an additional instrument to
keep the tax system complete: it levies an excise tax 7p; on households’ consumption of energy.?” The

budget constraint of agents of type i can, thus, be expressed as

(o)
ZptNt <Ci,t +dit(pEs+TD2) — (1 — THY) wteihi,t> < RoNoa;o+T. (29)
t=0
To focus on demand heterogeneity, we assume—as in our baseline—that there is no initial wealth
inequality, so that a; o = ag, for all i. We apply the same solution method as in our benchmark model

and provide derivation details in Appendix C.

6.2.1 Optimal tax rules

Propositions 4 and 5 below state the role of preferences for the additional polluting good on the optimal

taxation of pollution and energy consumption respectively.

Proposition 4 If agents’ utility is given by (28), the optimal pollution tax can be expressed as (22),
i.e. a modified Pigouvian rule that accounts for the MCF given by

COV(@Z‘ N Ic,Lt)

MCF, =1
t + ‘/;,t )

with

€ di
Leir=(1— ¢ 1 w; — - .
= (= )0 (7 o=+ )

From period 0, the over-time welfare-weighted average MCF is 1. If the IES is equal to 1, then MCF; =
1 for allt > 0.

35With Stone-Geary preferences, agents’ Engel curves are linear. However, when preferences are heterogeneous, the

aggregate distribution of expenditures may be a non-linear function of income.
36Horizontal heterogeneity arises when households with the same income do not consume goods in the same proportions.

Recent studies have shown the importance of horizontal heterogeneity on the distributional impacts of energy taxes in the

US (Cronin et al., 2019; Pizer and Sexton, 2019), and their implications for the design of tax reforms (Sallee, 2019).
3TWithout this instrument, there would be an additional constraint on the set of implementable allocations the planner

has to satisfy. To prevent the optimal carbon tax from attempting to correct for this missing instrument, we assume the

planner can also levy a tax on households’ energy consumption.
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The proof of Proposition 4 is provided in Appendix C.4. This result implies that the additional dirty
good affects the optimal pollution tax formula only through the MCF': energy needs affect households’
budget constraints, thereby affecting the planner’s implementation cost over time. This mechanism
might cause temporal fluctuations in the MCF, but it does not affect its long-term average value that
remains equal to 1 as in the benchmark. In addition, as in Proposition 2 above, when the TES is equal
to 1, the price and volume effects from an increase in aggregate consumption exactly offset each other,
so households’ total expenditures net of labor income remain unaffected by a marginal increase in the

pollution tax and the MCF is equal to 1 in all periods.

Proposition 5 If agents’ utility is given by (28), then the optimal tax on the polluting good is given
by

Dt = Ate(dtftdt)2
it PYey(o—1) Ate(o—1)"
F ) T
with
Aj Ai/ i, € 7

D = ijj + <1 —(14+e+7)(1- a))cov()\i/goi,wi), U= —M, Ay = —cov(Ni /i, di).

» J

j

The proof of Proposition 5 is provided in Appendix C.4. A corollary to this proposition is that, when
preferences for the energy good are homogeneous, the optimal excise tax on this good is zero, as Ay = 0.
We also show in Appendix C.4 that, in this case, the explicit formulas for labor, capital, and energy
input taxes are unchanged relative to the benchmark model. Thus, although poor households spend a
larger share of their budget on the polluting energy necessity, the optimal tax formulas are the same as
in the benchmark model. This result is reminiscent of Jacobs and van der Ploeg (2019) who show that as
long as Engel curves are linear—which is the case with Stone-Geary utility—corrective taxation should
not serve to address redistributive objectives, even when non-linear income taxation is not available.
Still, the optimal tax levels might differ from the benchmark due to differences in allocations: having
a second good modeled as a necessity generates a fixed cost to households’ utility, which exacerbates
inequalities.

In the general case where preferences differ between agents, the energy good is subsidized, 7p < 0,
if the agents who are valued relatively more by the planner compared to the market (higher \;/¢;) have
higher energy needs, d;;. In this case, the aggregate Engel curves are non-linear, hence subsidies on
necessities offer an additional levy for redistribution. When the agents who are valued relatively more
by the planner also have higher energy needs, the planner can target these agents by subsidizing the
energy good. Heterogeneity in tastes thus calls for a deviation from uniform consumption taxation, as
in Saez (2002). The sign and magnitude of this mechanism depend on the distribution of {d;};cz, both
between and within productivity types. First, as less productive types tend to have higher marginal
utilities of consumption, the relative weights \;/y; are generally higher for these agents. The excise
tax will therefore be higher to the extent that more productive agents have, on average, higher absolute
energy needs. Second, for a given productivity level, agents with higher energy needs will also tend to

have higher marginal utilities of consumption because of the higher fixed costs that they incur. This
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horizontal heterogeneity will therefore drive the value of the excise tax downward. Our quantitative
analysis below uses data on US households’ energy consumption to illustrate the impact of these two

sources of heterogeneity.

6.2.2 Quantitative analysis of the extended model

Calibration choices To calibrate this extended model, we choose our parameters to meet two ad-
ditional targets: the share of households’ expenditures on the energy good, and the share of aggregate
emissions coming from households’ energy consumption. Using the model’s first-order conditions, we
show, in Appendix G.6, that € can be expressed as a coefficient in a regression where households’ energy
and total expenditures are the only variables to observe. The distribution of these variables is obtained
from the Consumer Expenditure Survey (CEX), where energy expenditures correspond to the sum of
households’ expenditures on energy used for transport and housing. We first use this data to compute
the value of €, and set the initial value of d; to target an average energy expenditure share of 10.8%
as observed in the CEX. We then use the value of € to compute type-specific subsistence levels J@t to
match the observed distribution of energy expenditure shares across and within income groups. For the
share of emissions coming from households’ energy consumption, we target 30%, which represents the
share of emissions coming from the residential sector and households’ transportation. For additional

details on the procedure and calibration choices, see Appendix G.6.
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Figure 6: Carbon Tax Decomposition With and Without Energy Necessity Inequality.

Notes: The black line represents the second-best carbon tax normalized to 1. The red and blue lines display the effects of

the MCF and inequalities (both in productivity and in energy necessity) respectively.

Results Figure 6 shows a decomposition similar to the one shown for the baseline in Figure 2b above,
for the case where households have (a) identical energy necessity levels and (b) heterogeneous energy
necessity levels. We see that, in both cases, the MCF has again a negligible impact on the second-best
carbon tax. For both scenarios, the role of inequalities is also very comparable to the baseline of 3.9%,

both at 4.1%. While we could expect that the presence of a necessity—which is akin to a fixed cost to
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households’ consumption—would further increase the effect of inequalities on the carbon tax, this is in

fact mitigated by an increase in transfers financed by a higher labor tax.

Introducing heterogeneous necessity levels has negligible effects on the optimal carbon tax. From our
calibration, we see that on the one hand, the necessity level is on average higher for richer households,
which reduces inequalities, but on the other hand horizontal heterogeneity (i.e., differences in necessity
levels within productivity groups) increases inequalities. As a result, households’ necessity levels do
not strongly co-vary with their marginal utility of consumption, so heterogeneity in necessity barely
affects the carbon tax rates.>® For the same reason, optimal excise taxes on energy consumption are
very small, amounting to about —0.4% of energy prices in every period—they are exactly zero when

there is no heterogeneity in necessity levels.

Figure 7a displays the inter-temporal welfare gains from carbon taxation for each category. Be-
tween income groups, we observe a U-shaped pattern: while the poorest households benefit relatively
more from the increase in tax progressivity, the richest households benefit relatively more from future
environmental improvements that they value proportionally more. Within income groups, we see that
households with lower energy needs benefit relatively more, as they pay relatively less of the carbon
tax while still enjoying the revenue-recycling and mitigation benefits.

Figure 7b shows the welfare gains from setting carbon taxes to the SCC, ignoring inequalities, and
using the additional revenue exclusively to reduce distortive labor taxes. As in the benchmark results
presented in Section 5, the resulting distribution of welfare gains is highly regressive. These effects are
magnified by the presence of energy necessity inequality. The poorest households with higher energy
necessity actually lose significantly from the introduction of carbon taxes, even accounting for future
climate mitigation benefits. These results further highlight the importance of adjusting carbon taxation
for the presence of inequalities and combining it with the appropriate increase in the progressivity of

income taxes.

6.3 Heterogeneous sensitivity to environmental damages

Several recent studies have highlighted that the impact of environmental degradation is heterogeneous
across individuals, and is likely more negative for more financially deprived houscholds (for recent re-
views, see Banzhaf et al., 2019; Hsiang et al., 2020). In the case of climate change, higher exposure to
extreme temperatures and weaker adaptation means make poorer households on average more vulnera-
ble (see e.g., Dell et al., 2012; Ricke et al., 2018; Cruz and Rossi-Hansberg, 2021). While heterogeneity

in income, wealth, and consumption patterns are key to explaining the unequal burden from environ-

38 This result seems to contrast with Cremer et al. (2003), who find in the context of France that optimal environmental
taxes are significantly lower when preference heterogeneity is taken into account. In their model with four groups who differ
in their income and tastes, preferences for energy consumption co-vary strongly with marginal utilities of consumption.
Hence, there are large distributional benefits from setting lower environmental taxes. These effects are magnified when the
planner is more averse to inequality and when environmental damages are lower. In contrast, we employ a more granular
partition of households that captures heterogeneity both across and within income groups, allowing for greater flexibility
in computing the covariance relevant for determining the optimal tax. Our findings indicate that the resulting correction

term is negligible relative to the magnitude of the climate externality.
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Figure 7: Welfare Gains (%), Energy Necessity Inequality.

Notes: For each income decile and expenditure share tercile, the table shows the welfare gains, in percentage of consump-
tion, of moving from a scenario without carbon taxation and otherwise optimal income taxes to: (a) optimal carbon and
income taxation accounting for inequality; (b) carbon taxes set to the SCC and extra revenue used to reduce labor income

taxes.

mental policies, we now introduce heterogeneous exposure to environmental degradation to account for
the unequal benefits from pollution mitigation. Formally, we again assume that utility is additively
separable in Z; and additionally consider households with heterogeneous sensitivity to environmental

degradation, so that agent i’s utility function can be expressed as
wi (Ciyty hiyty Zt) = 0 (Cit, hit) + 0i(Zy). (30)

While production damages still arise at the aggregate level, households are heterogeneously affected by
environmental degradation directly through their utility. In the context of climate change, this may
capture heterogeneous effects on people’s health, exposure to conflicts, forced re-settlement, or losses

in various forms of amenity values.?’

When environmental degradation Z; heterogeneously affects households’ utility, the optimal pollu-
tion tax can still be expressed as the modified Pigouvian rule stated in Proposition 2, but the term Vz;
entering the Pigouvian formula—that captures the marginal disutility from environmental degradation
for the planner—mow depends on the joint distribution of utility damages and the planner’s welfare
weights,

Vze =Y miih(Zy) + cov (i, i(Z)).
i

Proposition 6 and Corollary 1 state the role of heterogeneous utility damages on the optimal pollution

tax.

Proposition 6 If environmental utility is additively separable from consumption and leisure as in (30),
heterogeneity in the marginal pollution damages to utility increases the pollution tax if and only if the

planner’s weights are positively correlated with marginal utility damages from pollution.

Corollary 1 If environmental utility is additively separable from consumption and leisure as in (30)

and the planner is utilitarian, heterogeneity in the marginal pollution damages to utility has no effect

39 Although these types of damages may also affect households’ productivity, we abstract from heterogeneous impacts

of Z; on agents’ productivity e; to keep the problem sufficiently tractable.
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on the optimal pollution tax. If the planner is Rawlsian, the pollution tax is higher if and only if agents

with the lowest welfare experience above-average marginal utility damages from pollution.

The proof of Proposition 6 is provided in Appendix D. As long as environmental welfare is additively
separable from consumption and leisure, marginal utility losses from environmental damages for the rich
and the poor are perfect substitutes for the planner. Corollary 1 additionally states that if the planner
is utilitarian, then an extra unit of utility for each household is valued equally by the planner, hence
the distribution of environmental damages is inconsequential for the planner when setting the optimal
pollution tax. If the planner gives a higher direct value to households who are worse off, however, the
environmental utility damages experienced by these households are valued more by the planner. In the
extreme case where the planner cares only about the household with the lowest welfare, the planner
determines the optimal pollution tax to internalize pollution on that household only and sets it to a
higher level if this household is more exposed.

Naturally, there are other mechanisms through which heterogeneous environmental damages could
matter for the optimal carbon tax, even with a utilitarian planner. This could be the case, for instance,
if accounting for damage heterogeneity raises the average marginal damage, if households have varying
capacities to adapt to these damages, or under certain alternative non-separable preferences between
consumption and the environment. These mechanisms are likely to operate mostly through the value

of the SCC and are beyond the scope of this paper.*’

7 Conclusion

Should environmental policies be less stringent in the presence of inequalities and redistributive tax-
ation? Do inequalities increase when optimal environmental policies are implemented? This paper
attempts to shed light on these questions. We develop a climate-economy model where environmental
degradation generates both production and utility externalities. Our model features heterogeneous
agents, which provides a micro-foundation for the use of distortionary taxes on labor and capital in-
come. We study both theoretically and quantitatively how different sources of heterogeneity and a

concern for redistribution affect the optimal carbon tax.

We show that tax distortions do not significantly affect carbon taxation when distortionary taxes
are optimally chosen to provide redistribution: the optimal carbon tax is approximately Pigouvian.
However, inequalities call for lower carbon taxes as the presence of poor households raises the marginal
value of consumption, increasing the opportunity costs of abatement. Still, in our calibration to the US
economy, this effect is quantitatively small, which is robust to reasonable variations in inequality, fiscal

pressure, and severity of damages. The carbon tax is not used to address inequality directly but instead

40Quantitatively, recent progress has been made by Cruz and Rossi-Hansberg (2021) in modeling spatially heterogeneous
damages from climate change. Still, as explained in Hsiang et al. (2020), heterogeneous impacts at the individual level are
difficult to measure as they are determined by several sources of heterogeneity that are hard to disentangle: heterogeneity
in initial climatic conditions, in their evolution, in individuals’ response to these changes, as well as in other individuals’

characteristics influencing their welfare impacts.
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is affected by the residual inequality that remains after the planner has optimally set income taxes. We
also re-examine the double-dividend hypothesis and show that at the optimum the carbon tax revenue
is divided about equally between increasing transfers and reducing distortionary taxes. This revenue
recycling increases the progressivity of the tax system, making poor households benefit even in the short
run. By contrast, we show that following the well-known double-dividend policy—using the carbon tax

revenue exclusively to reduce distortionary taxes—would generate strongly regressive effects.

Our paper presents numerous extensions to examine the implications of inequality for optimal carbon
taxation. We analyze various policy scenarios and multiple sources of household heterogeneity, including
unequal initial assets, energy demand, and sensitivity to environmental damages. Nevertheless, there
are additional relevant aspects that warrant further investigation. Specifically, we have left for future
research the role of risk—whether economic or climate-related—which could interact with inequalities
and influence the optimal policy. Moreover, it would be interesting to further explore theoretically and

quantitatively the role of heterogeneous damages of climate change.
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A Optimal tax rules in the benchmark model

A.1 Implementability conditions

Let ¢ = {¢;} be the market weights with ¢; > 0. Then, given aggregate levels ¢;, h; and Z;, the

individual levels can be found by solving the following static subproblem for each period t:

U (ct, he, Zy; ) = max ngoz (Citshig, Zt),  s.t. chzt ct, and Zmeihm:ht. (31)
i

Ci t:

The Lagrangian for this problem is

L= Zﬂz% (Cit hig, Ze) + 05 (Ct chz t> — o} (ht - Zﬂ'ieihi,t> ;
i
where 0¢ and 6] are Lagrange multipliers. Applying the envelope theorem to problem (31), we get
Uy =05, and Uy, = 0.

From the first-order conditions of problem (31), we also have

Pitleip =05, and @y = —e;0)
It follows that
Uet = pitic,it, (32)
A
Unt = Pilhit, (33)
€;

In any competitive equilibrium, these optimality conditions must hold for every agent i. Hence, using

(32), (33), and agents’ first-order conditions given by

Bt Ue,i t

= Pt,
Uc, 3,0
Uh,i,t
—= = — (1 — THy) ey,
Ue,it
we obtain .
ht Uh,i,t
= — = —UW¢ (1 — TH’t), (34)
Uc,t Ue,i t€
and

Uc,t _ Ueit Pt
Ueo  tUcio Bt

Given the relationships above we can derive the implementability condition which relies only on the

(35)

aggregates ¢, hy, Z;, and market weights ¢. In this section we assume utility is additively separable
in environmental damages, hence Z drops from the list of arguments. We turn to the non-separable
case in Appendix F. Let ¢} (ct, he; ) and R (ct, he; @) be the argmax of problem (31). The budget

constraint of agent ¢ implies
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[e.e]
Ztht (e (s Pas ) — (1= 7e) weei Ty (e, b ) < RoNoaio + T,
t=0

which using (34) and (35) can be restated as

Ueo(RoNoaio +T) ZﬁtNt< et 0% (ces hes ©) + Ungeshi’y (e, he @)); Vi (36)

A.2 Ramsey problem
A.2.1 Problem

Let A = {\;} be the planner’s welfare weight on type i, with ), m;A; = 1. Define
W (er, hu, Zi; 9,0, A) = Zm z< ciy (e hes o) by (Ctahﬁﬁp))"i'ﬁ(zt))

+Z7Tz i [Ueaclly (e hu; ) + Uneihily (o, hes )]

where 7;0; is the Lagrange multiplier on the implementability constraint of agent i, and # = {6;}. The

Ramsey problem can be written as

ENW ey, ey Zis 0,0, \) — (Ro N, T 37
{ChHl,ty}Igi}le,mKQ,tyZ/B i (Ct’ b2t P, COZTFZ ' 0 0a20+ ) ( )

E th7N/t}toi() 7/-_[17()077—(1)C

subject to

Nico + Gt + K1+ O (e, By) = (1= D (Zy)) A1 F (K, Hig, By) + (1 —0) Ky, V>0,
E, = A9,G (Kot,Hoy), Vt>0,
Zy=J (S0, B!,y EM o, eyme), Y >0,
FriGai=GriFae, Vt>0,
Kis+ Koy =K, Vit>0,
Hy;+ Hyy = Nihy, Vt2>0,

where B'vj, for j € {1,2,3} are the Lagrange multipliers on the feasibility constraints in the order
above. When using a functional form for households’ utility below, it will also be convenient to add
an additional constraint from the normalization of market weights. Because this constraint is a simple

normalization, it has no impact on the resulting allocations.

In what follows, we assume that there is no initial wealth inequality, that is a; o = ao for every i.

We relax this assumption in Appendix B.
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A.2.2 First-order conditions

The first-order conditions are

let] : Wer —11p =0, V>0, (38)
[Hyd) : Wig +v1e (1 — D) A1 Fry =0, Y t>0, (39)
(Hot| : Wiy + 104 A2,:Ge =0, V>0, (40)

(Kig41] : —vie + [(1 = Dgg1) Arpr1 Frpp1 + (1= 0)] rigpr =0, V>0, (41)
[(Kou41] : —vie + A2 1Gr 1o 1 + (1= 0) frigpyr =0, V>0, (42)

o0
(B —vi4 (Ops — (L= Dy) AviFry) —vay — > Bl (1= ) =0, V>0, (43)

j=0
[Zi] : NeWzy —v1 DAL Fi+ 13 =0, Vit>0, (44)
[e.e]
le) = =100 (e ) + Y B vseejIgpe B =0, V>0, (45)
5=0
[T]: > mibi =0. (46)
%

For brevity, we have suppressed the terms associated with the derivatives of U.q Y, m:0; (RgNoao + T),
as they vanish by equation (46) under no wealth inequality. Appendix B explains this result and its
implications in detail, and Appendix B.2 presents the full first-order conditions including these terms.
At t =0, we also have that

[Ki0]:[(1=Do)A10Fko+ (1 —=9)]v1po—r=0, (47)
[K20]: As oGk ove0+ (1 —0)vig— k=0, (48)
where & is the Lagrange multiplier on the constraint K19 + K20 = Ko, and it follows that
(1 = Do)A10Fkovi0 = A20GK 0120,

which together with (39) and (40), implies that

Fro Gkp
Fro Gapo

As in any other period, in t = 0 the requirement that the marginal rates of technical substitution are
equated between sectors is satisfied at the second-best allocation. Therefore, in most of what follows,

we ignore the multiplier on this constraint.
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A.3 Optimal taxes
A.3.1 Capital and Labor income taxes

From (38) and (39) we obtain
Wht

(1-D(Z)) Ay 4Fpgy =——+, Vt>0, (49)
Wc,t
and using the intertemporal condition (41) we get
1 Wey
Ri =14+mr4—0=— —, Vt>0, 50
rH . B Wejr (50)

These two equations can be used to back out the optimal taxes on labor and capital income. Plugging

(49) into (34) implies
Unt

=

it

= 1—- TH)
Uc,t Wc,t ( ’t)
which can be rearranged into
Uh t Wc t
THt=1— —-—>—. o1
ot Uet Why (51)
In any competitive equilibrium (35) holds, which together with p; = Ryy1pry1 implies
Uct+1
: Ry =1.
Uos BRit1
Substituting this into (50), it follows that
R |44 U
t+1 c,t+1 c,t (52)

Rz(+1 Wc,t Uc,t+1

A.3.2 Excise taxes of energy and emissions

From the abatement first-order condition (45) and the energy firm abatement decision (9) we have that

Oue _ 1

o0
— — J :
TEt = - = E Pvsirj T g
E; Vit 50 N

From the climate variable first-order condition (44) we have that
/
v3g = v14 Dy AL (Kyg, Hug, By) — NeWgy,
hence the pollution tax is given by

[e.e]

1 .
B = B (i Dy jAr i Frv = NewjWaees) Jopr s (53)
’ ]:0

From the energy first-order condition (43) we have that

©
—U1t <@E,t + (1 — ’ut)E_M: - (1- D(Zt))Al,tFE,t> = Vot (54)
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and combining the first-order conditions for sectoral labor supplies (39) and (40), it follows that

vor _ (1= D(Z)) AreFuy

Vi A2 Gy
From (4) and (8) we also have

(1—-D(Z:)) A14F 4
Ao Gy

Hence, using (5), (9), and (54) we have

=PEt —TIt — TE,t(l - Mt) - @E,t-

—Op:— (1= p)TEt +PEL = PEE — T14 — TEL(1 — 11¢) — OF 4,

and therefore
71t = 0. (55)

A.4 Explicit formulas
A.4.1 Characterization of equilibrium

Let us consider the following balanced-growth period utility function

(ci(1—chy))' ™

’U,(Ci,hi,Z): 1
— 0

+a(Z). (56)

To obtain explicit formulas, it is convenient to normalize market weights as follows
1
S (9]0 T =
J
Using the period utility function defined in (56), the Lagrangian for the characterization problem
defined by (15) is

i (1—chi))' ™7
L= Y i |l hil) gz

+oe (ct - Z mcz-,t) gt (ht . Z wieihi,t).

The first-order conditions are

[Ci,t] Ny (Ci,t (1 — §hi7t)7)1_a C;tl = «9tc, Vi > 0,
[hig) = @i (cie (1 — §hz’,t)7)1_a Y6 (1 —chig) " = e, Vt>0.

)

Rearranging yields

so that

Htc 9?, e 7(17‘7) _0'_(11_0')7
1
Cit — — | Y 5
o Pi <9tc ’VG)
1
HC < ec Hh e 7(170') o—(1-o)y
1-chi = g 2 (2 (2
07 ei \ pi \ 0§ s
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and summing across types (given that ¢; = ), mici s, and hy = >, mie;h;t)

1 1
6 ’Y(l—O’) o—(1—0o)y 67(1—0) o—(1—0o)y
— [ pe t > i 7
( ! (90 S ZZ: Pi

1
Qc or 1 Y(1—0) o—(1—o)v ¢ 1(1—0) _ﬁl—ﬁ)w
1—-ch pc [ 2L — : =
Sy = Hh g(t(9§7§> ZW (901 )

It follows that

cit (et hes o) = wicr, (57)
Wi
1_§h?3€ (ct, he; 0) = ;(1—§ht)a (58)
where )
pi (e ) S
(.UZ‘ = < ) T = (SOZ (ei)’Y(o—_l)) a & . (59)

2 (w7

Thus, we can write aggregate indirect utility U (¢, he, Zi; ) in terms of the aggregates ¢y, hy, and Z;

I+y\ 1@ e
w; ¢ (1 —chy)” .
U (ct, he, Zt, ) :Zﬂj%‘ (;—7> (e 1 _;) ) +ZTF190¢U(Z)
j i

J

(e (- chy)")'™

T " raz), (60)

since from the normalization of market weights we have
AN Yo-1) =i
Zﬂj% (7) _; <<PJ o= ) T =1,
and with I' = ) m¢p;.
A.4.2 Explicit tax formulas

From (36), substituting the derivatives of U (¢, he, Zt; @) into the definition of W (¢, he, Zi; 0,0, \) we
get

1—0

W(Ctahtazt;%e,/\ Zﬂ'z 1 (ﬂ “ 1_§ht) ) ” —|-'ll(Z)>
+Zm 0 | (cr (1= sha))' ™7 s = (et (1= she))' ™7 (1= sha) ™ (ei = wi (1 = sh)|

Collecting terms and simplifying we obtain

(c(1—ch))' ™"

1—0

W (e, he, Zis 0,0, \) = @ +U(Z) + WU, (61)

o1



where

(I)Ezi:mwi <ﬁ+(1—0)(1+7)9i>,

Pi
o mﬁiei
@:Z -
(]

Substituting the derivatives into equation (51) we get

e (1 —chy) ™!
THt = ( t) ) (62)
P+ Us(l—v(1-0))(1—ch)
substituting the derivatives into (52) yields
Ryt ®—Tey(1—0)(1—shpyr) " (63)
Riy @ Uoy(1—0)(1—ch)
and substituting the derivatives into (53) we get
N
TEE= > 5 (Vl,t+jD1,t+jAl,t+th+j - Nt+jVZ(Zt+j)) JEM 4 (64)
b =0
with v1; the multiplier of the resource constraint which we can express as
vig=Wer = Ve + Z Ti0iLe it (65)

If we add—without loss of generality—the normalization of market weights as a constraint into the
Ramsey problem, we obtain the following first-order conditions with respect to market weights

¢ Wi
c—(1-0)7 ¢

> BINW,, e — =0, Vi
t

From this equation, we have that

00 _ Y\1—0 _ . X )
SN, (ce (1= che)) " (1= 0) (147) micws (ﬁ + &-) - ¢ ™—0, Vi,
— l1—0 o—1-0)y ¢ Pi o—(1-0)y @i
and therefore )
=~ +6; = Coo - , Vi,

with

Ulee, he) = (e (1 — ght)’Y)l—a‘

l1—0

Zméi = 0, mei = 1, and Zmei = 1,

Using the fact that

it follows that

Z i) _ ¢ _
~ Qj (1—0) (14+7) 32, BINU (cr, by)’

J
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and, therefore

=3 TN A (66)
Pj Pi

This allows us to rewrite

<I>=;Wi E—l—(l—a)(l—i—’y) ;ﬁ_a
= ij% + (1 —1+y01- J))cov()\i/goi,wi), (67)

Ai/ @i, €i
Zﬂj (1—¢j) = -V Qi/ire)) (68)

S

where the last result is obtained using the normalization of productivity levels, > me; = 1.

Notice that labor and capital income taxes are zero whenever ¥ = (0, which, according to equation
(68), occurs in three special cases: (i) when there is no agent heterogeneity, (%) when the planner’s and
the market’s weights are perfectly aligned, and (%ii) when agents’ productivity are uncorrelated with the
relative social weights. Intuitively, the first case corresponds to the outcome of a representative-agent
model in which lump-sum taxation is allowed: since there is no need to redistribute, the government
can rely only on non-distortionary taxes to finance its expenditures. The second case corresponds to
the situation in which the market allocation happens to be the one preferred by the planner: although
there might be inequalities due to differences in productivity and asset holdings, they are consistent
with the relative weight the planner gives to each type of individual. The third situation encompasses
the two previous ones but also includes situations in which the planner would want to redistribute but
faces a targeting problem, i.e. it cannot reach a better allocation than the market one using anonymous
linear instruments due to the absence of correlation between the source of inequalities and its relative

preference over agents’ types.

The implementability conditions can be rewritten as

Uc,o (R()Noai,o + T) + Me; )
w; = = V1,

(1=0) (1+7) 220 BN (co, he)’

with -
M= BNy (e (1—che)) ™7 (L—chy) ™" (69)
t=0
Since Y1 ; miw; = 1, it follows that
c,0RoNo(as0 — A M(e; — 1 .
w; =14+ U 70R0 O(CZ 0 ooO) + Ee ) s Y i. (70)
(L—=0) (1 +7) 2220 BNU (cts he)

- (SOie7(U_1)) ==
7 )

Moreover, since

we can express market weights as

o—(1—0o
0 = w;f—(l—a)’y _ 1 Uc,oRoN()(a@o — Ao) + M(ei — 1) ( )’Y
gl g U (1= 0) (L4 9) 20 BN (e )

% %
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A.5 Comparison with Pigou

First-best pollution tax To compare our second-best results with the first-best, we solve the same
Ramsey problem except that we now allow for individualized lump-sum transfers. All first-order con-
ditions remain the same except for the one with respect to T given by (46): since we now have

individualized instruments 7T}, we obtain
0; =0, Vi,

hence for all t, >, m;0;Z.;; = 0. From (66), this also implies that

)
ﬁ _ 7Tj>\z'
Pi Z @i

J

and as a consequence we have ¥ = 0, so that for all ¢, 7y = 0 and 7x; = 0. Substituting for vy, in

(53), we can express the first-best tax as

NiriVaiai

i Vetts 1y t+iVZ t1j
7_Et = Z/B ( Dt+]A1 t+iFhy — V. . JEgW,tJ,-j .
C7

The first-best tax is equal to the social cost of the externality—i.e., to the Pigouvian tax—evaluated
at the first-best allocation.

Proof of Proposition 2: Recall the following definitions from Section 3.3:

Vit
MCFt = s
Vct
Pigou,Y _ jretty CH‘J
TEt E :5 V. DH-jAl t+JFt+JJEM 430
=0 c,t
o)
Pigou,U _ (—1) Zﬁj Nt+sz,t+jJ
TEt = —V EM t+js
=0 c,t
Pigou _ _Pigou,Y Pzgou U
gt =TEt +7 )
Pigou,U
v_TBt
Wy = Pigou ’
TEt

/
[)) ‘/;’t+sDt+5A17t+SE+SJEyﬂH_S
o0 ; . / ] ] .
2 =0 Vet i Dy j At B Tppt o

At+5 =

Substituting into equation (64), we obtain equation (22) stated in Proposition 2,

sg( MCF, ik, e (= wl) + MCFt)

__Pigou
TEt = TE t

Using equation (65) to substitute in the definition of the MCF, we also obtain equation (23) stated in

Proposition 2, 0L
COVI\U;, Lejit

MCF; =1
t + Vir

o4



With balanced-growth preferences, using the expression of U(c¢t, hy, Zt, ) given by (60) and the solutions
for ¢f'; and A"} given by (57) and (58), we can show that Z;; defined by (19) can be expressed as

iy = (Ct(l - §ht)7>(1_0) <wi + 7(% — ﬁ)) ; (72)

Ly
Ct '

from which we obtain
Ic,i,t = (1 — O')

Using the fact that ), m6; = 0, we can re-write the marginal reduction in implementation cost as

cov(0;,Z; +)
Ct )

Zmezm_ (1—0) (73)
This term is equal to 0 when either o tends to 1 or ¢; and Z;; are uncorrelated. Thus, when the IES
tends to 1, the MCF is equal to 1 in all periods. Using the binding implementability conditions, we

can also express the discounted sum of Z; ;,

[ee]
> NiB'Ti(cr, b, ) = Ueo(Roaio + T).
t=0
When there is no initial wealth inequality, or when initial wealth is expropriated—which, as we have
shown, is optimal as long as initial wealth and productivity are positively correlated—then for any i, j,
Ropa; 0 = Roajo. We can then write the discounted sum of Z;; as a constant k7 that does not depend
on agents’ type,
o0
ZNtﬁtL’(Cta hi, ) = kz.
t=0
Using this expression, we can show that the welfare-weighted average MCF from period 0 onward is
equal to 1, since with V; =V (e, he, Zi; 0, ),

>0 NiB'Vi x MCF; 1 ( ‘ ' — o)L, t)
=0t = NSV 4+ NS, H—
s NSV Y oNtﬂtVt Z Wi Z W tZ” Vecr

= SN Ntﬁtvt (ZNtﬁtVri-Zm‘) ZNtﬁ T t>
t=0

NﬁtV—l—m 7T192>
By N6V<Z t I;

=1,

Link with the capital income tax From (18), using balanced-growth utility, we can show that

(1 —ch -
V(Ct,ht,Zt;@v Zﬂzwz Ct < t) ) —|—ZAL(Z),

Y2 1—0o
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hence using the explicit expression of U(cy, he, Zt, ) given by (60) and taking derivatives we have

by
Ver = Zm‘wz‘EUcm (74)

2

from which we can show that

‘/c,t Uc,t
From (52), and using the fact that
Wet
MCF; = — 75
t ‘/ct ) ( )

we can write the ratio of MCFs as .
MCFey; v Risk

MCF, — LRy

Thus, from Proposition 2 we see that production damages are perfectly internalized if the capital tax

is optimally set to zero for all future periods where current emissions generate production damages.

Price and volume effects To understand the role of the IES, it is useful to go back to the origin
of the term Z; ;. This term comes from households’ budget constraint (2) in which we have substituted
for the price and real wage using (34) and (35). From these equations, it appears that when making
more resources available to households, the price goes down since, in equilibrium,

b= (2) ()

When o tends to 1, the price effect exactly offsets the volume effect so that households’ expenditures
and nominal income remain unchanged after an inflow of aggregate consumption, hence the planner
does not need to change the value of the lump-sum transfer and the implementation cost remains

constant.

Labor supply effect To determine the sign of the covariance term driving the MCF, we can examine
the ratio of the period implementation cost for two agents ¢ and j such that e; > e;. From (72), we

have
1, wi+(wi- o)

Wi +7(wj - (T—ih%))

Although the discounted sum of Z;; is invariant across type, in period ¢ this ratio may be below or

above 1 depending on the value of the aggregate labor supply. In particular, we have

Z;,
00 _ ot (ewi—ewy) (76)
Ohy (1— §ht)2(wj(1 +7) — (13?}'“))2

From (70), we can also show that with homogeneous initial wealth (or full expropriation of initial

wealth), when transfers plus initial assets are positive (as they are in our quantitative analysis) then
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wj/e; is strictly declining in e;, hence for e; > e;, the derivative in (76) is negative. This result
means that when h; is high relative to its average value, the relative labor supply of highly productive
households compared to less productive households is higher, hence more productive households need
lower transfers to satisfy the planners’ allocation at that period. If the more productive also have a
lower marginal utility of consumption (hence a higher 6;), then cov(6;,Z;+) < 0. Thus, when the IES
is less than unity so that the price effect dominates, an increase in aggregate consumption reduces the
planner’s implementation cost and the MCF is higher than 1 in a given period if and only if the labor
supply is relatively high compared to its long-run value.

Proof of Proposition 3: From our characterization problem, we know that market weights are

determined by the following expression,
Yitteit = Uy, Vi,

hence substituting into equation (74) and using the fact that for any period t, w; = ¢;¢/c¢; and
> milcit/er) =1, we have

Ue,i tCit
‘/c,t:E TN ———=
- Ct
(]

c;
= E Wikiuc’@t + COV(/\Z'UC,M, _cz,t ) . (77)
- t
i

Thus, between the first-best and the second-best case, the marginal utility of consumption will differ
due to the path of aggregate consumption, as well as the distribution of individual allocations. Holding
aggregate consumption constant, we see that an increase in the variance of ¢;; has ambiguous effects.
On the one hand, since u, is convex in ¢ for o > 0, from Jensen’s inequality the average marginal utility
is increasing with consumption inequalities. On the other hand, higher marginal utilities are weighted
by lower consumption levels, hence increasing consumption dispersion reduces the relative weight given
to high marginal utilities. The net effect depends on the curvature of the utility function. From (59),
when o tends to 1 we have w; = ;, hence from (74) and using the normalization of the planner’s
weights we have
Ver = Uey.

Thus, when ¢ tends to 1, the two previous effects cancel each other and the distribution of individual

allocations has no incidence on the marginal utility of consumption. |

B Optimal tax rules with initial wealth inequality
In Appendix A.2.1, we describe the Ramsey problem with wealth inequality.

B.1 Time-inconsistency

The tax rules we have described in our benchmark apply unchanged for every period including period 0.

This is the result of two features of the benchmark model. The first is the ability of the Ramsey planner
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to choose lump-sum transfers (or taxes), and the second is the assumption that the planner can set the
initial capital tax to expropriate initial wealth, thereby eliminating any initial wealth inequality. To
see this, notice that the planner’s problem (see equation (37)) is symmetric with respect to time except

for the last term in the objective function of the Ramsey planner, which we denote here by Wy,

Wo=U.p Z mi0; (NoRoaio +T).

As argued above, the optimality condition associated with the choice of T implies that ). m;6; = 0.
Thus, if there is no initial wealth inequality, i.e. if a; 0 = ag for every 7, it follows that Wy = 0 and that
the tax rules are time-invariant. Moreover, if there is initial wealth inequality, the planner can set 7x

such that Ry = 0, and we again have Wy = 0.

This does not mean that the tax rules are time-consistent: if the Ramsey planner was allowed to re-
optimize in a future period, they would want to deviate from the choices made by the planner in period
0. The reason for the time inconsistency is, however, different from the one in the usual representative-
agent version of the Ramsey problem in which the planner cannot choose lump-sum transfers. In that
case, in general, Y . m6; # 0, and Wy # 0 regardless of initial wealth inequality, which leads to the
usual reason for time-inconsistent Ramsey policies; initial capital income taxes mimic the unavailable
and undistortive lump-sum taxes. In our setup, the reason for time inconsistency has to do instead
with the use of capital income taxes to redistribute unequal asset income. Since asset inequality evolves
endogenously over time, starting the Ramsey problem in a future period would mean having a different

initial asset distribution.

There is a sense in which the time inconsistency problem in our setup is less severe than in the usual
representative agent case. If there was no initial wealth inequality, and the optimal Ramsey policy was
such that the economy was in a balanced-growth path starting from period 0, then there would still
be no wealth inequality in every future period and the Ramsey policy would be time-consistent. In
any case, in this section, we address how the Ramsey policy changes in the presence of initial wealth

inequality.

B.2 First-order conditions

Here we consider the problem of the planner assuming that 7 is taken as given. For ¢ > 1, the
conditions are exactly the same as the ones derived above, in particular, we have that ), m;6; = 0, which
we use to simplify the equations below. The period-0 marginal rate of technical substitution constraint

is no longer automatically satisfied, so let I'g denote the Lagrange multiplier on this constraint. The
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first-order conditions for period 0 are
lco] : Weo — 1,0 — Ueeo »_ mifli Roaio = 0, (78)

[(Hi,0] : Who+v1,0(1 = Do) A10Fu,0 — Uenp Z ;0 Roa; o (79)

1

— NoUeo Y mithiaio (1 = 7x,0) (1 = Do) A10Fkcrr o0+ Lo (FuuoGro — FruoGuo) =0,

7

[Hao] : Who +12,0420GH0 — Ucho Z mi0;Roaio + Lo (FroGrao — FroGamp) =0, (80)

)

[K10] : (1= Do) A1,0Fk0+ (1= 8)) 10— NoUeo Y miliaio (1 = Ti0) (1 — Do) A1 oFkrc0 — &

2

+ Lo (FuroGro — FxroGup) =0, (81)

[K20]: Ao oGk ov2,0+ (1 —0)vig— K+ 1o (FaoGrko — FrkoGrK,0) =0, (82)

[Eo] L (@E,O - (1 - Do) A170FE70) Vi,0 — V20 — Z ﬁjV&jJEéWJ (1 - ,uo) (83)
=0

— NoUeo Y _ mifliaio (1 = mx,0) (1 — Do) A1oFxpo + Lo (FupoGro — FxpoGro) =0,

7

[Zo] : NoW 7,0 — v1,0DyA10Fy + v30 + NoUs Z mibsaio (1 — Tr0) DyA10Fk,0 =0, (84)
i
m .
[,uo] : _V1,0@u,0 + Z ﬁj V3,jJEé\47jEO = 0. (85)
=0

B.3 Multiplier on period-0 marginal rate of technical substitution constraint

From (81) and (82), it follows that

2,0 A1pFko  NoUcyo A10FK K0
——=(1-D — — : mibiaio (1 — 7 1—-Dy) ———F5—
V1,0 ( 0) Az 0GK V1,0 ; ifiaio ( x0)( 0) A2 oGk
Lo (FuroGro — FrroGro) — (FroGrko — FkoGrK))
V10 A27OGK,O '

From (79) and (80), it follows that

2,0 A1oFuo  NoUcyo A10FkH0
—— =(1-D : — — ’ mﬂiai 1—r7 1—Dy) —
V1,0 ( 0) A2 0GHp V1,0 ; ol x0)( 0) A2 0GHp
Lo (FrmoGro — FruoGuo) — (FroGrmo — FroGuH))
vip Az0GH0 '

Hence, putting these two equations together, we obtain

. NoUco Y, mibiaio (1 — 1,0) (1 — Do) A10 (Gro0FkH0 — GHO0FKK,0)
Gro(Frr0GK0 — FrE0GH)) — (FH0GKHO0 — FK0GHH)))
—GHo (Faro0Gro — FkroGH0) — (Fa0GKrK0 — FrR0GHK)))
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B.4 Labor income taxes

From (79) and (78) we obtain

—Who + Uehp d_; mibi Roaio
+NoUcp > ; mibiaio (1 — i) (1 — Do) A1oFka0 — Do (FuuoGko — FxuoGh0)
Weo — Ueco Y; mibiRoaio

(1= Do) A1,0FHo = {

(86)
Plugging (86) into (34) implies
Who — Uecho>_; mifiRoai
Un.o —NoUcp >, mibiaio (1 — mr0) (1 — Do) AroFra0 + Do (FuuoGko — FxuoGho) a )
- — T
Uco Weo — Ueco Y ; mibiRoaio o7

which can be rearranged into

Uno Weo — Ueco y; mibhiRoaio

Who — Uecho >,; mifi Roaio '
—NoUep >, mibhiaio (1 — 7k0) (1 — Do) A1,0Fkm0+ Lo (FaroGKo — FruoGHO)

B.5 Capital income taxes

From (41) and (78) we obtain

1 Wep = Ueeo 3 mibli Roaio

Ri=1 — 0=
! o B Wc,l

In any competitive equilibrium (35) holds, which implies

U
ﬁ/ﬂ%l =1
Substituting this into (50), it follows that
Ry _ Wea Uc,O‘ (87)
Ry Weo—Ucoy; mibiRoaio Ucn
B.6 Excise taxes of energy and emissions
From (9) and the abatement first-order condition (85) we have that
TEo = GELOO = ﬁgﬁ%ﬂw,j- (88)
From the climate variable first-order condition (84) we have that
vs0 = 110Dy A1,0F) — NoWz0 — NoUv Z mibiaio (1 — 7k0) DyA1,0FKk - (89)
i
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Substituting (89) into (88) we obtain the initial pollution tax

1 > i / ch : /
TE0 = _1/1 . E ﬁj (Vl,ijALij — NjWZJ) JE(])WJ- — 1/1 o 7T29 (ZZO TK,O) DoAl,OFK@JEéW,o.
K :0

From the energy first-order condition (83) we have that

1) c
(1—D0)A10FEO_3 = (@E0+(1_H0)TEO) +N0 OZTFZ@ azo(l_TKO) (1—D0)A10FKE0

Iy

— — (Fue,oGro — FreEoGH)0) -
V10

Combining the first-order conditions for sectoral labor supplies (79) and (80), it follows that

AoF NoU., AioF!

1/1,0 A2,0GH,0 vig & T oCro
+ Lo (FrnoGro— FKH,(JGH,O) — (FuoGrHo0 — FroGHH0))
V10 A270GH,0 7
and, therefore
A1 oF
(1= Do) A10Fp0 = (Or0+ (1 = po)7E0) + (1 — Do) A108H0
A20GHy
+ No Uep Z” tiai0 (1 — 7k,0) (1 — Do) <A10FKE0 M)
V1,0 1Vt AZOGH’O
To ((FHH,OGK,O — FrnoGuo) — (FroGrmo — FkoGuup) (FupoCico— Fi OGHO))
V1,0 AZ,OGH,Q 7 : 7 , '

Then, from (4), (5), and (8) we have that
(1 —=Dg) A1 0Fnp = ((1 — Do) A10FE0 — 110 — (Op0 + (1 — ,UO)TE,O)>A2,OGH,Oa

and therefore

Ueo A1 oFkm0
= N ) 9 . 1 _ 1 _ D A F _ R ,
1,0 "o zi:m iaio (1 — i) ( 0) ( Fkeo = iy
Lo ((FrroGro — FxnoGro) — (FroGrao — FrxoGuup)
) 3 ) ) ) ) ) ) _ F G _ F G .
i V1,0 < A270GH’0 ( HE, 0~ K,0 KE,0 H,O)

C Optimal tax rules with energy consumption inequality

The derivation of optimal tax rules in this extended version of the model closely follows the method
applied to solve the benchmark model. This appendix highlights the differences with the benchmark
presented in Appendix A.
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C.1 Characterization of equilibrium

Let ¢ = {¢;} be the market weights normalized so that

1
J

with ¢; > 0. Then, given aggregate levels ¢, di, hy and Z;, the individual levels can be found by solving

the following static subproblem for each period t:

Uce,dphe, Zisp) = max Y mipiu; (Ci, dig, hi, Z2)

Citdi Nt

' (90)
s.t. ch@t =c¢, and Zﬂidi,t =d;, and Zmeihi,t = hy.

Using the utility function defined by equation (28) and following the same steps as in Appendix A, we

obtain the following solutions for this problem

C?ft (Ctadhht?(P) = WiCt,
di’y (e, dy, he; ) = dit + wi (dt — Jt),
wj
L —chiy (ce, di, hes o) = ;(1 —chy),

1
with d, = > mJi,t, and where

I

1
Y(o—1)\ 1-(A+e+~)(1-0)
Wi = (Qpiei( )>

which enables us to write the aggregate indirect utility in terms of the aggregates and market weights

l1-0o

(culde = @) (1 = she))

1—0

U(Ctadt7ht7Zt) =

+Ta(2),
with I' = Zz UriZn

C.2 Implementability condition

From the first-order conditions of problem (90) and applying the envelope theorem we have

Uc,t = QilUcit,

Uit = piug,ig,

Pilh,it

Uh,t = —,
€;

which together with the first-order conditions of individual agents’ problems give

Up,t Up it
= = —W¢ 1_7—H,t 91
Uet  ucit€it ( ) (91)

Ua Ui
L= 2 = ppy+ o, (92)

Uct Ue,it

)
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and
Uc,t _ Ucit Pt

Up  Ueip B
Using (91), (92), and (93) to substitute in households’ budget constraint (29), we obtain the imple-

mentability conditions

(93)

Ueo (RoNoaio +T) = Z BN, <Uc7t0?7t(ct, dy, he; 0) +Uqadily (co, dy, hus )+ Upgeshfly (e, dy, ha 80))7 Vi.
=0

C.3 Ramsey problem

Let again A = {);} be the planner’s welfare weight on type ¢, with » }, m;A; = 1. Define the pseudo-utility

function

W(Ct,dt,ht,Zt;QO,H,A Ezﬂ-l/\ul ;nt(Ct,dt,ht;QO),dZLt(Ct,dt,ht;@),hm(Ct,dt,ht;@),Zt)
+Z7Tz z|: et (coy i, )+Ud7tdﬁ(0t,dt,ht§¢) +Uh,t€z‘,thm(0t,dt,ht§¢) )

where 7;0; is the Lagrange multiplier on the implementability constraint of agent i, and § = {6;}. The

new Ramsey problem can be written as

max E N BW (eq, dy, by Ziy 0,0, 0) — U E 7;0; (RoNoaio + 1),
{ct,H1,t,H2,t,K1,¢,K2 ¢, Py
di, B, 28,0} 520. T

subject to

Niey + Gy + Kep1 + Oy (e, By) = (1= D (Zy)) Av o F (K g, Hyg, Erg) + (1= 6) Ky, V>0,
E; = A2,G (Ko, Hoy), V>0,
Zy=J (S0, By, s EM moy o), V>0,
Fr (K14 Hyg, B1)Gr(KeiHot) = F(KyiHyg, B ) Gr (Ko Hay), V>0,
Kii+ Koy =Ky, Vi>0,
Hy;+ Hoyy = Nihy, Vit2>0,
Nydi + By =E;, Vt>0,
S, ((pje;‘y(a—l))l—(lWiv)(l—U) _1
j

where Nid; + F1; = FE; is the only additional constraint compared to the benchmark problem.

C.4 Optimal taxes

Tax formulas From the first-order conditions of the Ramsey problem, and using the same steps as

in Appendix A, we can show that
THt = 1-— ’ ’ ’ (94)



Rt—i—l _ Wc,t+1 Uc7t

= , 95
R?—l—l Wc,t Uc,t+l ( )
e
Bt Z B (1445 D1y j AL Firj — NepjWzigg) JEM 145 (96)
bl ]:0

and

TI,t =0.

Using the first-order conditions with respect to d;, E1 ¢ and ¢; we have
War = Wer(1 — D(Z))A1+FE g,

which together with (92) and the final good firm’s first-order condition with respect to Ej; (given by

(5) in the benchmark model) gives
Usr  Way

TD,t = .
Uc,t Wc,t

(97)
Proof of Proposition 4: The proof follows the same steps as the proof of Proposition 2. If we define

V(Ct, di, e, Zys 0,0, )\) = Z TN (C?}(Ct, dg, hy; @),dﬁ (Ct, dg, hy; 90), h;,"t (Ct, dg, hy; 90), Zt),

and
Li(ce, diy hyy ) = Uil (coy ey hus 0) + Uaedy'y (o, dy, hes ©) + Un e chily (e, de, bes ) (98)

we can express the MCF as
COV(@Z', Ic,z’,t)

)
Vet

and we can re-write the optimal pollution tax given by (96) as

MCF; =1+

o0
A Veurs D mi0Zeiivs NiyiVzitj
TEr =) | = : =Dy j A1+ Frr g — : JpM i
Using the definitions of Tgitgou’ Ay, and w{ stated in Section 3.3, and substituting for the MCF, we can
write .
U
— rhigou ( %A (1 — U Wi )
e = 75" | o (2 icr, a0~ * 3w, )

With balanced-growth preferences, substituting into (98) we obtain

€ Jit
Icz' =(1-— UC 1 8 P —— . |
= (= ) (1 s =y e )

Proof of Proposition 5: Using our functional form assumption, we can rewrite the pseudo-utility

function as follows

(ce(dy — di)“(1 = chy)7)' =7

l1—0

W (Ct7 dt7 ht7 Zt7 @, 97 )‘) = q) + ﬁ(Z) + \I’Uh,t + AtUdyt ’
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where

Ai

o= mei(a+ (1—0)(1+6+’y)9z‘>,

i
1
U= E Z T, Zﬂiei,
i
At = ZTI’Z‘HZ'CZM.
i
We can use the first-order conditions with respect to market weights to obtain

92':2@—&,

F Pj Pi

from which we can rewrite

(I):me()\—%—|—(1—0)(1+6+’Y)<Zw_)\_i,))

"2

= zj:wj% + <1 —(14+e+)(1- o*))cov()\i/cpi,wi),

1 TiN; N
v (N D)
_ _oovhi/pie)
g M
Ay = Z?TZ(Z W;j.\j N %)Ji’t
[ J
= —cov(N\i/ i, diy).

Substituting the derivatives of U into equation (97), we get

—_— Ae(dy — Jt)_lUd,t _ t(dte—cCtlt)2 -
¢ = = )
T DUy + OUnoy + MU Ty o—1) _ Are(o—1)

t T het + MUder @ + =) &t_gt)

Explicit income tax formulas We can additionally obtain expressions for the other tax rates. In

particular, substituting the derivatives of U and W into equations (94) and (95), we have

U, U
1 e+ U+ Ay Wl —ch)
TH,t - - (:I) + \I’Uhh't +A Udh,t B g(l—’y(l—U’)) 6(1—0’) ’
Uh,t t Uh,t q) + \IJ (1—§ht) + At

(d¢—ds)

Ucd,t+1 Uch,t41 e(l-—0) 3, sv(1l—0)
Riy1 O+ An Uc,t41 +v Ucit1 A (dir1—dty1) \Ij(l_ChtJrl)
o Ucd,t Uch,t o e(1—0) sy(1—0) ’
Rt+l D+ At Uet + v Uot P + At (de—dy) - (1—<hy)

and following the same steps as in Appendix A.4.2 we can obtain an expression for market weights

1 UcoRoNo(aio — Ao) + Y, Ntﬁt(%(ei —1) = Ugy(diy — Jt)> 1—(14e+y)(1-0)
p; = 1+ _
(1 - 0)(1 + e+ 7) Zt Nt/ﬁtU(Cta dt) ht)
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Comparison with the benchmark formula The previous expression is the same as the one found
in our benchmark, and the optimal tax will again be equal to the social cost of pollution when the
marginal reduction in implementation cost (ZZ mi6iZc41) is null, which is the case in the first-best.
Compared to our benchmark, the marginal implementation cost now includes an additional term from

the derivative of Uy with respect to consumption. In particular, we again have

0, 71,
ng Teit = U)M’
t

but now the ratio of the period implementation cost for two agents ¢ and j is

. E‘ii,t __"ei
Ty (14 €+ y)wi + (di—dy) ~ (T—<ha)

- GJ] t V€5

(Mt et v+ @2 — T

N

Thus, the sign of the marginal implementation cost depends on a price effect through o, and on an
energy demand and labor supply effects from cov(6;,Z; ). The covariance term is higher in periods
when richer households (higher 6;) work relatively less, or when they have higher energy needs relative

to poor households compared to an average period.

D Optimal tax rules with heterogeneous climate damages

Proof of Proposition 6: When utility is additively separable in consumption-leisure and environ-
mental quality, the benchmark model presented in Appendix A can easily be generalized to the case
where households experience heterogeneous climate damages on their utility. If we write agents’ utility
function as

wi (Cigy ity Zy) = U (Cig, hig) + 0i( Zy),

and apply the same steps as in Appendix A, we can again show that

+ > mibiLe i+ NiyiVziyj
- _ i c,t+j 7 (X} jD A F J ) J .
o Z 6 < Ct + Z mi0iLe it St Sl ar C,t + Ez 7TZ’97:IC77:¢ B+

The only difference with the benchmark model is the expression of Vz;, the marginal disutility from

environmental degradation for the planner, which now writes
VZ,t = Z 7TZ‘>\Z"LAL;(Z,§).
i
Using the fact that ) . mA; = 1, we obtain

VZt—Z”z (Z4) + cov (N, @(Z1)),

hence heterogeneity in marginal utility damages matters for the optimal pollution tax if and only if

these marginal damages correlate with the planner’s weight. Bl

Corollary 1 is a straightforward application of Proposition 6.
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E Optimal tax rules with third-best policies

In our baseline Ramsey problem, the government faces the constraint that only linear and anonymous
instruments can be used. Still, this set of fiscal instruments confers a lot of power to the government,
arguably more than what most governments have. When introducing an environmental tax policy, a
government may not have complete freedom to adjust labor or capital income taxes. In this appendix,
we consider the implications of introducing these constraints. We first summarize the theoretical results
with fixed labor and then capital income taxes in Appendices E.1 and E.2. Appendix E.3 presents a

quantitative assessment, and detailed derivations are presented in Appendices E.4 and E.5.

E.1 Fixed labor income tax

Let us assume that the planner cannot choose the labor income tax, which is exogenously fixed at a
level Ty in all periods ¢ > 0. The planner now faces additional constraints: in every period t > 0, it
must ensure that

Un,t

U . :_(1_7_—H) (1_Dt)Al,tFH,t7 (99)

which pins down the wedge between the marginal rate of substitution between consumption and leisure
and the marginal product of labor. For a given value of 7y, equation (99) puts a restriction on
the implementable allocations that the planner must satisfy. Let 3'Af’ denote the multiplier on the
constraint (99). The latter is proportional to the welfare impact of raising the exogenous 7g in a
particular period. The multiplier Afl will be positive (resp. negative) on average if the labor income
tax is fixed at a sub-optimally high (resp. low) level. With the additional constraint (99) in each period

t, the expression for the optimal pollution tax becomes (see Appendix E.4 for more details)*!

1 o . _
oL = > 5 <V17t+jD1/t+jA17t+th+j_Nt+jVZ,t+j+Ag-j (1—7nm) D£+jA1,t+jFH,t+j> Jpn 44j5 (100)
=0

where v1 ; is the multiplier on the aggregate resource constraint in period ¢, which measures the scarcity
of consumption goods and hence, the opportunity costs of reducing emissions. Compared to equation
(20), the main modification is the final term in parentheses, which Barrage (2020) refers to as the fiscal
interaction term. The impact on optimal carbon taxes is in general ambiguous and reflects another
reason for deviating from the Pigouvian tax rule. If 7y is fixed at a level below the second-best labor
tax, for instance, it is beneficial to reduce carbon taxes and allow climate damages to reduce labor
productivity bringing the after-tax wage closer to the optimal level that would be reached without the

constraint.

' Without constraint (99), it is optimal to equalize the marginal rate of technical substitution between capital and
labor across both sectors: the government does not wish to distort production decisions. In the third best, with constraint

(99), this is no longer the case, and it is optimal to deviate from zero excise energy taxes, 7r.¢.
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E.2 Fixed capital income tax

Let us now assume that the planner cannot choose the capital income tax, that is exogenously fixed at
a level Ti in all periods ¢ > 0. The new constraints faced by the planner are such that in every period
t>0,

UU;’t = [3(1 + (1= 7x) (1 = Dyy1) Ar 41 Fr i1 — 5)>, (101)

ettl

which links the marginal rate of substitution between consumption in periods ¢t and ¢t + 1 (on the left-
hand side) to the after-tax interest rate (on the right-hand side). As with an exogenous labor income
tax, equation (101) restricts the set of implementable allocations for a given value of Tx. Let ﬁtAtIfrl
be the multiplier on this constraint in period ¢. The multiplier is positive if the capital income tax rate
is fixed at a sub-optimally high level so that raising T in a particular period lowers welfare. With the
additional constraint (101), the expression for the optimal pollution tax is modified to (see Appendix

E.5 for more details)

1 o _
TEt = o Z B (Vl,t+jD£+jAl,t+th+j — NewjWzppj + Afij (1-7k) D1/t+jA1,t+jFK,t+j> JEM 1455
t“

b ]:0
(102)
where again the last component captures the fiscal interaction term. The intuition is similar to before.
If 7x¢ is fixed at a sub-optimally high level, for instance, it is beneficial to increase carbon taxes and
further reduce climate damages to increase the marginal product of capital and bring the after-tax

interest rate closer to the optimal level.

E.3 Quantitative analysis

Figure 8 below compares the third-best pollution tax normalized to 1 (black line) with what it would
be ignoring the new fiscal interaction term (green line), ignoring the MCF (red line), and ignoring
inequalities (blue line).#? As in our benchmark scenario, the MCF plays an insignificant role but
inequalities push the carbon tax downward. The effect of inequalities is slightly larger when the labor
income tax is fixed: ignoring inequalities would increase the tax by around 6% in this scenario instead
of about 4% in the second-best and in the scenario where the capital tax is fixed. Indeed, since 7y is
set to 25.5%, i.e. below the second-best tax rate, there are more consumption inequalities than in the

second-best and the opportunity cost of emission abatement is higher.

While the MCEF still plays a negligible role, as can be seen from the small difference between the
green and red lines in both panels, fiscal interactions now drive the carbon tax away from its Pigouvian
level through the additional constraints that arise in the third-best environment. Interestingly, the fiscal
interaction term lowers the optimal carbon tax when the labor income tax is fixed, whereas it raises
the optimal carbon tax when the capital income tax is fixed. Recall that a carbon tax, by reducing
production damages, increases both the marginal product of labor and the marginal product of capital

and hence, the before-tax wage and interest rate. A higher before-tax wage, in turn, lowers welfare

42 Appendix H.2 presents figures for the optimal path of income and carbon taxes in the third-best scenarios.
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Figure 8: Third-Best Carbon Tax Decomposition.

Notes: The black line represents the second-best carbon tax normalized to 1. The green line shows what this tax would
be without the fiscal interaction term, holding aggregates constant—for (a) this is the last term in equation (100) and for
(b) the last term in equation (102). As in Figure 2b, the red and blue lines display the effects of the MCF and inequalities

respectively, relative to the green line. All taxes are computed under the baseline calibration.

because the labor income tax is set at a sub-optimally low level (i.e., 7y = 25.5% instead of around 49%
at the optimum), whereas a higher before-tax interest rate raises welfare because the capital income tax
is set at a sub-optimally high level (i.e., Tk = 41.1% instead of virtually 0% at the optimum). A higher
carbon tax thus alleviates the savings distortion, whereas it amplifies the costs of taxing labor income
at a sub-optimally low level. This explains why, quantitatively, we find that the fiscal interaction term
is positive when the capital income tax is fixed, and negative when the labor income tax is fixed.
Appendix H.2 also provides the government budget adjustments and welfare gains in these third-
best policy scenarios. These results suggest that the general pattern of the distribution of welfare
gains from carbon taxation does not strongly depend on the fiscal policies currently in place, but the
optimal use of the carbon tax revenue does. While this revenue is split about equally between increasing
transfers and reducing the labor income tax in our baseline scenario, this is not the case with additional
constraints on instruments. In particular, when the government is forced to redistribute “too little”
because labor income taxes are set below the optimum, the carbon tax revenue is mostly targeted

toward redistribution, leading to more progressive effects.

E.4 Optimal tax rules with fixed labor income taxes

Suppose that labor taxes are given, 7y = Ty. Then, the planner’s problem described in Appendix

A.2.1 has the following additional constraints,

U,
T == (=7 (1= D) Ay Fy, (103)
FriGri = Fr G- (104)
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Although the second of these two constraints is already required in the benchmark model, it happens
to be endogenously satisfied in that case. With an additional constraint on instruments, this is not
necessarily the case anymore. Let [)’tA{{ and [)’tff{ be the multipliers on these constraints. Then, the

first-order conditions of the planner’s problem become

ct] : Wey — v+ AF9., =0, V>0, (105)
(1] s Wi + w10 (1= Do) AveFir + A (90 + (U= 71) (1= D) AyiFiuny)
i (FHH,tGKt - FKH,tGH,t) =0, Vt>0, (106)
[Hay) : Wiy +v24 A2 Gy + A0y + TF (FuiGrpy — FrxiGuug) =0, Vt>0, (107)
(K1 t41] : =it + ((1 — Dyt1) A g1 Fre g1 + (1 = 9) )5V1,t+1 +BAE < (1 =7y) (1 = Dy41) Al,t+1FHK,t+1>
+ BT, (FHK,t+1GK,t+1 - FKK,t+1GH,t+1> =0, Vt>0, (108)
(Kotq1) : —vip + A2 11Grpr18v2041 + (1 = 0) Brign
+ BT (Fr41Gr k41 — Frp1GHK141) =0, V>0, (109)

o0
(B s =11 (Ons — (1= D) AveFg) —vae — > Bvaer gy (1— o)

=0
+ AT (1 7)1 — Dy) A1y Frpy) + T (Fup.Gri — FxpiGuy) =0, Vt>0,
(110)
(Z4] : NWzy — v14 DAL Fy +vsy — A (1 — 7)) DjA1  Fry =0, YV t>0, (111)
1] = —114O 0 + ZﬁjVs,HjJng,HjEt =0, Vt=0, (112)
=0
[7]:) mifi =0, (113)
q T3
wil Y BNW,, . — =0, 114
D TR (4
where
_ Uch,tUc,t - Uh,tUcc,t
19ct = 2 )
’ NtUC,t
9, . = UnntUct — UntUcht
h7t o NtUcz’t '

E.4.1 Capital income taxes and multipliers on new constraints
From (106) and (105) we obtain

Wi+ A <19h,t +(1—7y)(1—Dy) Al,tFHH,t) +TH (GK,tFHH,t — GH,tFKH,t)

Wc,t + Aflﬂc,t ’
(115)

(1-Dy)A11Fry = —

Vit>0,
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and using the intertemporal condition (108) we get

RI+151+74t+1—(5

Wer + Ay — BAR, < (1 =7x) (1 = Dit1) A17t+1FHK,t+1)
1 —OBlt1 (Fur+1Gri+1 — Fxr1+1GH41)
= — . ViE>0.  (116)
B Wetr1 + A 0c i1

Solving (106) and (107), and (108) and (109) for /v, and equating both equations, using (104),
yields
F{{ = CtAtHa
where
(1—7a)(1—Dy) A1t (GxtFrunt — GuiFrmt)
GH,t( (FrutGrt — FrritGrt) — (FutGrit — FK,tGKH,t)>
_GK,t< (Fau+Grt — FrutGut) — (FutGrmt — FK,tGHH,t)>

Vi>0.

EA
Il

Combining this equation with (115) we can then solve for

Whi+ (1 — Dy) A1t FriWey

A= — .
K Ot + (1= Dy) A1t Frg¥er + (1 = Ta) (1 — Dy) AviFuag + G (GriFuny — GuiFre)

In any competitive equilibrium (35) holds, which together with p; = Rypy1 implies

Uc,t-‘,—l

=1.
Un BRi41

Substituting this into (116), it follows that

H
Ritq Werr1 + A 0c i1 Uet

Hin Wep + Aff0ey = BAL, ( (1=7n) (1 = De1a) A17t+1FHK,t+1) ettt

H
—Bry (FHK,t+1GK,t+1 - FKK,t+1GH,t+1)

E.4.2 Excise taxes of energy and emissions

From (9) and the abatement first-order condition (112) we have that

@:ufv

ot = J J 117
TE,t E, Vlt Zﬁ V3 t+j EM t+j- ( )

From the climate variable first-order condition (111) we have that
1/3715 = Vl,tD;gAl,tFt - WZ,t + Afl (1 — 7_'H) DllfAl,tFH,t- (118)

Substituting (118) into (117) we obtain the optimal pollution tax

— /
TEt = E Z B] (1/1 t+]Dt+]A1 t+]Ft+] - Nt-l—jWZ t+j + AH‘] (( TH) Dt+jA1,t+jFH,t+j) )JE,M,H-J"
7=0
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From the energy first-order condition (110) we have that

1% AH TH
(1—Dy) Al,tFE,t—f = (@E,t+(1—ut)TE,t)—# (1—7m)(1—Dy) Al,tFHE,t_# (FaeiGrt — FrEtGHy) -
7t }t ,t

Combining the first-order conditions for sectoral labor supplies (106) and (107), it follows that

vor (1 —Dy) A Fry N E (1—=7g)(1—Dy) A1+ Frmy

Vit B A2,tGH,t Vit AQ,tGH,t
n U (PG — FrxniGryg) — (FaiGrme — FraGrmg)
1z A1 Gry ’
and, therefore
1—Dy) Ay F, AH F
(1—=Dy) A11Fer = (Ops + (1 — p)7E4) + ( A;t)G;Z 7ty ;tt (1—=7g)(1—Dy) Art <#§;t - FHE,t)
H F Gy — F G — (Fyg .G — I G
LI (( nuiGrt — FkniGu) — (FuiGruy — FraGrng) (Firpa Gt — FKE,tGH,t)) .
Vit A27tGH,t

Then, from (4), (5), and (8) we have that

(1—Dy)A1tFmy = ((1 — Dy) A4 Fpy — 110 — (Ope + (1 — /tt)TE,t))A2,tGH,t,

and therefore

A F,
7']715 = V_t(l_%H)(l_Dt)Al,t (ﬂ

)

n E ((FHH,tGKt — FxuiGut) — (FuiGrue — FriGrme)

— (F Gg+—F G .
AxiGry ( HEtC Kt KE,t H,t)>

Vit
E.5 Optimal tax rules with fixed capital income taxes

Now suppose that capital income taxes are given, 7 ; = Tr. Then, the planner’s problem has the

following additional constraints,

Ue _
= (14 (1= 7) (1 = Dis) Avea Ficen = 9) ). (119)
c,t+1
FriGri = FriGryg. (120)
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Let ﬁtAtlil and B'T'K be the multipliers on these constraints. Then the first-order conditions of the

planner’s problem become
Ath—l Ucc,t E Uc,t—lUcc,t
Ny Uegrr  Ne o BUZ,

ARy Uchy AF Ue—1Uchy
Ny UC,t-ﬁ-l Ny 5Uc27t

+ A (1 —7x) (1 — Dy) Ay Freps +TK (FHH,tGK,t - FKH,tGH,t) =0, Vt>0,

[Ct] : Wc,t — Vit — = 0, Vit Z 0, (121)

(Hi4) : Whye+v1e (1 —Dy) A1t Fre —

(122)
ALY Uy AE Uer1Ueny
Hyy W, Ao Gy — —dL el 8 2o ol
[H2 4] ht T V21 A2:GH N Uorrr T I, BUCQ,t
+TK (FH,tGKH,t - FK,tGHH,t> =0, Vt>0, (123)
(K1) s —vie + ((1 — Dyy1) A1 Frc1 + (1= 0) )/3V1,t+1 + BAS ( (1= 7K) (1 = Diy1) A17t+1FKK7t+1)
+ ATE, (FHK,t+1GK,t+1 - FKK,t+1GH,t+1> =0, Vt=>0, (124)
(Koit1] : —vig + A2 i1Gr 1 Broer + (1 = 6) Bri e
+ AT, (FH,t+1GKK,t+1 - FK7t+1GHK,t+1> =0, Vt>0, (125)
o
[Be] - =v10 (Omy — (1= D) A1 Fiy) — vy = > Bvseejdgpr oy (1= )
§=0
+ AtK((l —7r) (1= Dy) Al,tFKE,t> +TK (FHE,tGK,t — FKE,tGH,t> =0, Vt=>0,
(126)
(Zd) : NeWgy — viDyALE +vsy — AF (1 — 7i) DyA1tFies) =0, YV t>0, (127)
[ee]
[/,Lt] : _Vl,t@,u,t + Z ﬁjy&t—&-jJEgW,t_;_jEt = 0, YVt > O, (128)
j=0
[1]:) mifi =0, (129)
i
t ¢ Wi
il We. + — =0. 130
[('pl] Zt: B Pi,t o — (1 — O') N ( )
E.5.1 Capital income taxes and multipliers on new constraints
From(122) and (121) we obtain
AE L UL AK U, U, _
) W Rron s TN, T A (1= 7k) (1= D) Ay Frep s
+TE (Fup Gt — FruiGry)
(1 _Dt) Al,tFH,t == ! AKE K )
W, — Stk Uce,t + Ay Uet—1Ucc,t
et Nt Uc,t+1 Ne  pUZ,
(131)
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and using the intertemporal condition (124) we get
Ry =1+r41-9

AR, U AK Ueyo1U.
t+1 cc,t + c,t—1Vcc,t
Wer — =~

Yeet Yejt—1Yeert K _ 7 _
Nt Ueerr ' N BUZ, BA (1 = 7x) (1 = Deg1) Are1 Frr1
K
1 =Bl (Fuki+1Griv1 — Frre1Gr 1)
3 AEL U, AR U, - (132)
W _ t+2 Yce,t+1 t+1 Yc,tYce,t+1
c,t+1 Nit1 Ueypi2 Niy1 ﬁUc:Z,t+1

Solving (106) and (107), and (108) and (109) for v5;/v1+, and equating both equations, using (120),
yields

Ff = gtA{<7
where
1—7g)(1 = Dy) A1+ (G F — Gu+F
G = (1—7k)( 1) A1 (G FrH HiFKK ) Cviso.
GH,t( (FrutGrt — FrrtGrt) — (FutGrit — FK,tGKH,t)>
_GK,t( (Fuu+Grt — FrutGut) — (FutGrme — FK,tGHH,t)>
In any competitive equilibrium (35) holds, which together with p; = Ryp;+1 implies
Ueit+1
: R =1.
Uc,t /6 i
Substituting this into (132), it follows that
ReAE —BRi 1 AE ) U, _
Wer + (GRY Ntt+1 ) Uc,’: — BAE L (1= 7k) (1 = Dyg1) A1 41 Fric a1
SR — —BAS 1 (Fuk+1G et — Frr+1Gr+1)
t+1 0% + (Rt+lAﬁ1_ﬁRt+2Aﬁ2) Uce,t+1
o+l Nty Uc,t+1
Plugging (131) into (34) implies
W, — AP Uena AK Uet—1Uch +AK (1—7k) (1 — D) AL4F
h,t Nt Ugit1 N; ﬁ[]cz,t t K t 1t KHt
Unt +TE (Fup Gy — FruiGuy) a )
_ —Tme),
Uc,t W _ Aﬁ»l Ucc,t & Uc,t—lUcc,t H7t
ot Nt Uect4+1 N BUf,t
which can be rearranged into
Aﬁl Ucc,t AK Uc,t—lUcc,t
Unt Wei = N

Nt Ucp1 N BUZ,
THt=1— :

Uet W, — A1 Uchy AF Uet—1Ucht
hit Nt Uecty1 Ny pUZ,

+AE (1 - 7)) (1= Dy) A1t Fxpe + U (FuniGrt — FruiGr)
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E.5.2 Excise taxes of energy and emissions
From (9) and the abatement first-order condition (128) we have that

© 1
— 2wt 2 E J .
TEt = Et = Vi 4 OB V3’t+]JEt]W,t+j' (133)
j:

From the climate variable first-order condition (127) we have that
I/37t = V17tD£A17tFt — NtWZﬂg —I— Af (1 — 7__K) D;AlthKﬂg. (134)

Substituting (134) into (133) we obtain the optimal pollution tax
1 [ee]
TEL= > B (VLt+jD£+jA1,t+th+j — Ny iWaziss + M5 (1= 7r) Dy jAv i Ficie ) )JEy,t+j-
=0

From the energy first-order condition (126) we have that

v AE rk
(1—Dy) A17tFE,t—f = (9E,t+(1—ﬂt)TE,t)—f (1—-7k)(1—Dy) A17tFKE,t_j (FuptGrt — FrxpiGHt) -
7t 7t 7t

Combining the first-order conditions for sectoral labor supplies (122) and (123), it follows that

vor (1—Dy)A11Fnq n ﬁ (1—7r)(1—Dy) A1t Frcme

Vit A2 Gy Vit A2 Gy
+§ (FrutGrt — FrutGuyt) — (FuiGrut — Fx+Grme)
Vit AZJGH,t 7
and, therefore
1—Dy) Ay +F AE F
(1—Dy) A1 Fgr = (Ops+ (1 — p)7E,4) + ( A;t)G;Z ity ;tt (1—7k) (1= Dt) A1y <ﬁ - FKEJ)
i UF ((FumsGri — FxniGrg) — (FuiGrme — FiciGrmg) (FupiGres — FepaGry) ) -
Ui A Gy

Then, from (4), (5), and (8) we have that
(1—Dy) A1 Fus = ((1 — D) A1y Fry — 11 — (@E,t +(1— Mt)TE,t))AQ,tGH,t,

and therefore

AE < Frpy )
i ==t (1—7) (1= D) Ay, (=52 _p
Tt Vl,t( i) ( ) Al AoaCrts KE.t
s /(F G — F G — (Fy .G — G
L L (( uniGrt — FrniGrt) — (FuGrmoe — FxiGrmg) — (FrmiCrcs — FKE,tGH,t))-
Vit A2 1Grry
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F Optimal tax rules with non-separable utility

In our benchmark economy, we have assumed that households’ utility is additively separable between
consumption and leisure on the one hand, and climate damages on the other, as in Barrage (2020). To
explore the role of this assumption, we now turn to a more general utility function where environmental
damages are not separable from consumption and leisure. The derivation of the new optimal tax rules
closely follows the method presented in Appendix A. This appendix highlights the differences with this

benchmark.

F.1 Implementability conditions

Following the same steps as in Appendix A.1, we can show that conditions (34) and (35) still hold
since they can be obtained without making any specific assumption about separability. With non-
separable utility, however, the solutions for individual consumption and labor supply also depend on

the environmental variable Z. As a result, the implementability constraints can be stated as

Ueo(RoNoaio +T) ZB Nt< Uerci (o hey Zis ) + Ungeihily (co, by, Zy; <P)>, Vi

F.2 Ramsey problem

Following the same steps as in Appendix A.2, we can define the following pseudo-utility function

W(cr, hes Zis 0.0, 0) = ZWM'U ci (e hes Zos ) s hily (o hes Zos ) 5 Zt)

+Z7Tz i [Ueaciy (co, hey Zis 0) 4 Ungeshly (o, he, Ze )] -

The Ramsey problem can then be formulated exactly like in the additively separable case: the only
difference between the two problems is the expression of the pseudo-utility function W. It follows that
the tax formulas expressed as functions of the derivatives of W also remain unchanged, i.e. we still
have, Vt > 0,

’ 1 Wc,t Uh,t
Ht =1 — o 77 >
Wh,t Uc,t
Uer W,
* c,t ct+l
Riy1=R

1
Wct U1’

/
[(Wc,t+th+jALt+th+j - Nt+jWZ,t+j> JEtM,t—l—j:| :

7
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F.3 Characterization of equilibrium

To understand the implications of the separability assumption, let us consider the following period
utility function,

1_
(ci(1 =shi)'x(2)) °

1—0

U(Ci,hi,Z) = +fL(Z)

This specification generalizes our baseline additively separable utility by allowing environmental dam-
ages to also affect households’ marginal utility from consumption and leisure through the function x(Z2),
with ¥/ (Z) < 0, limz_, x(Z) > 0, and normalized such that x(0) = 1. Using this functional form, the

new Lagrangian of the characterization problem is, Vt > 0,

1—0o

01— chi)x(Z)) 7
L= Zm% [(C o1 = shie)'x(%1)) + ’tl(Zt)] + 05 (e — chz‘,t) —oF (bt — Zﬂieihi,t)~

Following the same steps as in Appendix A.4.1, we can show that individual consumption and labor
supply decisions can be expressed with the same functions of aggregates as in the additively separable

case,

m . J—
c@t(cta ht7 Zt7 SO) = WiCt,

1-— §hm(6t, ht, Zt; (,D) = %(1 — (ht),
)

where, making the same normalization assumption as in the additively separable case,

1

i (e 7(o-1) o~ (1-0)n 1
wi = (90 ) ) i = (902'(62‘)7(0_1)> o= (1),

e )0

From the above, it follows that the environmental variable Z affects individual consumption only

through aggregate consumption, and affects individual labor supply only through aggregate labor sup-
ply. We can now write the aggregate indirect utility U(Ct, he, Zy; cp) in terms of the aggregates ¢, hy,
Zy, and market weights ¢,

LN (6 (1= chy) x(Z))
U(ct,ht,Zt,QD) :Zm% (w;w ) (Ct( §1tz ()j(( t))

- + Zmﬁﬂz‘ﬁ(zt)
l1—0
_ (e (1 = che)"x(20)) Tz,

1—0

where we have again used the same normalization of market weights as in the additively separable case,
and with I' = ), me;.
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F.4 Explicit tax formulas

Using our functional form, we can express the pseudo-utility function as

Awi (ce(1 = chy) I x(Z))' 7 A
Wet, hey Zus p, 0, X) :Z (; ( d 1t1 :( t)) +Z7Ti)\iu(Zt)

% 7

+ E mib; [wi(l + ) (e (1 - ght)wx(Zt))l_a —yei(l— ght)_l(ct(l — ght)'yx(Zt))l_g ,

1—ch)"x(Z)) 7
:qp(ct( <hi) 'x(Z1)) +0(Z) + VU,

1—0c

with again

P = mez(%
. mibie;
U= Z -

With our new functional form, Uy, /U, and Uy, /U, remain unchanged relative to the additively sepa-

(1= 0)(1+7)6:),

rable case. It follows that the explicit formulas for labor and capital income taxes given by (62) and

(63) remain exactly unchanged. Turning to the pollution tax, we now have

_ j c,t+j +Z TrZHICZt-‘r]D A o
Zﬁ( TR D s

(135)
VZ,t+j + VZ7t+_j + ZZ WieiIZ,i,t—i-j
~ e Ver + 2 mibhiZet JEéMvH‘J" vt 20,
with
. Niwi (er(1 —che)x(Z0))' 7
Ve, he, Z, A) =
(Ct) ty Lty P,y ) zz: ©; 1—0 ’
V(Z) = a(Z),
and 1—
Ii,t = UCJCZT% -+ Uh,teihZLt = |:w2(1 + "y) — ’}/62(1 — §ht)_1:| <Ct(1 — Cht)PyX(Zt)) . (136)

Notice that equation (135) generally applies to any utility function where damages are modeled both
additively and non-additively, i.e. it is not specific to the balanced growth preference assumption.
The novel feature relative to the baseline formula is the additional term, ) . 7;6;Z7; ;. This term,
which Barrage (2020) labels the offer curve impact of environmental damages, represents how much
environmental degradation affects the planner’s ability to implement its preferred allocation. As can be
seen from equation (136), this effect matters only to the extent that the environmental variable affects
the marginal utility from consumption and leisure. Using our functional form, we have

Vzi

L1zt = Ic,z‘,tma
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which depends only on non-separable damages VZt, but not on separable damages Vz,t. Following the
definition of the MCF (see Section 3), we have

Ver+ > 7ibiZeis = Vey x MCF,, Yt >0,
%

hence we can re-write the optimal pollution tax as

MCF; \ Ve Vo ) TMCF, x Vg

)

. [MCFyy; [ Vigri Voo Voo
TE4 = Zﬁ] |: t+J < t+J D£+jAl7t+th+j _ Nt-l,-j Z7t+]> N, % JEi”,t'i‘j’ Yt > 0.
§j=0

(137)
The offer curve impact term therefore leads to adjust the non-additive utility damages with their
contemporaneous MCF. Intuitively, these non-additive damages are akin to consumption damages as
they affect the marginal utility of consumption. Hence, these are internalized in the same way as

production damages.

Following the same steps as in Appendix A.5, one can show that the welfare-weighted average MCF
from period 0 onward is again equal to 1, that the MCF is equal to 1 in all periods when the IES is
equal to unity, and that the ratio MCF,;;/MCF, is 1 as long as going forward the optimal capital tax
is null. Hence, the implications of tax distortions for optimal carbon taxation are the same as in the

benchmark where environmental damages enter the utility function only in an additively separable way.

Turning to the effect of inequality, the main difference with the additively separable case is that non-
separable damages, as captured by Vy /Ve, are not affected by consumption inequality. In particular,
we have ~

Vairi _ X/(Zt)c
- ts

Ver  x(Z)
which depends on aggregates only. Thus, the optimal pollution tax is affected by inequality only

through the term VZ,t+j /Vet, i.e. only through the additively separable damages. Thus, if part of
environmental utility damages enter in a non-additively separable way, the effect of inequality on the

optimal pollution tax could become even smaller than in the baseline.

G Calibration

G.1 Government

Regarding taxes on capital and labor income, we follow Trabandt and Uhlig (2012), who conduct a
detailed analysis of fiscal policies in the US and a number of European countries. Using a comprehensive
measure of taxes on capital income, they find that, on average, capital income in the US is taxed at

a rate of 41.4%. Hence, we set a time-invariant 75 = 0.411 in our baseline.** They find that labor

43Specifically, to obtain a comprehensive measure of capital tax rates, Trabandt and Uhlig (2012) adjust the personal
income tax rate to account for income, profit, and capital gains taxes of corporations, taxes on financial and capital
transactions and recurrent taxes on immovable property. Similarly, to calculate labor income taxes, personal income taxes

are adjusted to account for payroll taxes and social security contributions.
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income, in turn, is taxed at a rate of 22.1%. Combined with a tax rate on consumption of 4.6%, this
translates into a consumption-labor wedge of 25.5%, or 77 = 1 — (1 — 0.221) /(1 + 0.046) = 0.255.

To obtain the empirical counterparts of the two components of government spending, government
consumption G§' and exogenous transfers G, we collect data on US government expenses from the
IMF Government Finance Statistics. As in Barrage (2020), we include the following categories from
the expense breakdown in G': compensation of employees, use of goods and services, subsidies, grants,
and other expenses. For transfers G} , we include social benefits. Averaging over the years 2011-2015,
government consumption is G§ /Y1 o = 0.158, while government transfers are G{' /Y7 o = 0.145. To keep
the sizes comparable to GDP going forward, both government consumption and exogenous transfers

grow at the sum of technological progress and population growth.*4

G.2 Productivity distribution

We calibrate the ability distribution on the basis of hourly wage data that we obtain from the Survey
of Consumer Finances (SCF). For each of the 6,015 households in the 2013 wave of the survey, we sum
the hours worked on their main job and potential additional job(s) in a normal week. The annual labor
supply of the respondent and their partner is then calculated by multiplying weekly hours worked by 52
minus the number of weeks they have spent unemployed during the past 12 months minus the number
of weeks spent on holidays (which we assume to be equal to 3 for each worker). The household’s hourly
wage is then obtained as the household’s annual income from wages and salaries before taxes, divided
by the household’s total annual labor supply (i.e., the sum of the respondent and their partner’s labor
supply). This number reflects how much household members were paid on average for each hour of

work they supplied in the past year.

To obtain the hourly wage distribution, we make a few additional adjustments. We first drop all
households with an hourly wage below $1 or above $1,000. We also restrict the sample to households
who have worked at least 1 week over the past 12 months, who work at least 1 hour on a normal
week, and with no member working above 100 hours. Finally, we restrict the sample to households
whose respondent is at least 18 years old, and at most 65 years old. Using this sub-sample, we divide
households into ten groups of hourly wage deciles. These correspond to I = 10 groups with size

m; = 0.10. For each group, we compute the average hourly wage.

G.3 Wealth distribution

For each of the ten productivity groups, we again divide households into ten deciles of net worth. For
each sub-group, we compute the average net worth. This provides a table in which households are split

into 100 groups of equal size, with each of these groups having different average hourly wages and net

4With these expenditure levels and the current tax system the intertemporal government budget constraint is not
balanced. To balance the budget, taxes need to be raised in the future. We also consider an alternative calibration with
the level of G rescaled to balance the budget with status-quo policies. This does not have important implications for the

results, except that the average level of lump-sum transfers is affected.

80



worth.4®

Because agents in our model are infinitely lived but hourly wage and asset holdings are positively
correlated with age, we control for generational heterogeneity. To do so, we divide households into ten
generations based on the age of the respondent and compute the average hourly wage and net worth of
each of the 100 groups within each generation. We then obtain the average hourly wage and net worth

for each group as the average of that group over all generations. Table II below provides the results.

Table II: Distribution of Households Hourly Wages and Net Worth by Productivity Deciles (Rows) and
Net Worth Deciles (Columns).

Net worth deciles

1st 2nd 3rd 4th 5th 6th Tth 8th 9th 10th Hourly wage

1st  -4.59e+04 -7.00e+03 1.22e4+03 7.45¢+03 1.79¢+04 3.25e+04 6.44e+04 1.12e4+05 2.18¢+05 1.10e+06 6.44e+00
2nd  -2.99e4+04 -1.97e4+03 4.89e4+03 1.23e+04 2.50e+04 3.97e+04 6.46e+04 1.03e+05 1.83e+05 1.04e+06 1.11e+01
3rd  -4.13e+04 -6.00e+03 3.72e+03 1.29e+04 2.76e4+04 4.47e4+04 7.69e+04 1.09¢+05 2.0le+05 7.19e+05 1.42e+01
4th  -4.56e4+04 -2.65e+03 1.44e+04 3.31e+04 5.38e+04 7.48¢+04 1.0le+05 1.50e+05 2.67e4+05 7.64e+05 1.73e+01
5th  -4.94e4+04 -2.15e4+03 1.55e4+04 3.58e+04 6.72e+04 9.53e+04 1.40e+05 2.07e+05 2.98¢+05 1.10e+06 2.05e+01
6th -3.82e+04 1.21e4+04 3.94e+04 7.26e+04 1.14e4+05 1.60e+05 2.13e4+05 2.88e+05 4.60e+05 1.75e+06 2.41e+01
Tth  -2.41e4+04 3.79e+04 6.75e+04 1.03e+05 1.54e+05 2.06e+05 2.63e+05 3.58e+05 5.32e4+05 1.23e+06 2.86e+01
8th  -2.93e+04 3.00e+04 7.10e+04 1.34e4+05 2.11e+05 2.80e+05 3.90e+05 5.04e+05 6.94e+05 2.57e+06 3.48e+-01
9th  4.38¢+03  6.86e+04 1.44e+05 2.11e4+05 3.07e4+05 4.20e+05 5.53e4+05 7.45e+05 1.08e+06 3.50e+06 4.47e+01
10th -8.53e+04 1.40e+05 2.77e+05 4.43e+05 6.38e+05 8.55e+05 1.29e+06 2.14e+06 3.45e+06 1.00e+07 1.01e+-02

Productivity deciles

Note: The rows correspond to productivity (i.e. hourly wage) decile groups. The last column corresponds to the average
hourly wage in dollars for each productivity group. Columns 1 to 10 correspond to net worth decile groups within
productivity groups. The numbers reported in these columns are the average net worth for each group in dollars. All
groups are defined for a given generation, and values correspond to the weighted average across ten generation groups.
Example: 1.10e+06 in the 1st row, 10th column, means that among the people that belong to the bottom 10% of the

hourly wage distribution of their generation, the 10% wealthiest have an average net worth of $1.10e+06.

G.4 Baseline hours worked

We also use the SCF 2013 to compute the initial labor supply that we impute to the model. To do so, we
again restrict the sample to individuals between 18 and 65 years old. However, because our aim is not
to compute hourly wages but to look at the average labor supply, we do not eliminate outliers based on
their hourly wage or labor supply. In particular, we keep unemployed households for whom the hourly
wage is not observed, as dropping them would lead to an overestimation of the average labor supply.
For all households in the sample, we divide the annual labor supply by the number of working-age
individuals (individuals between 18 and 65). This yields an average of 1440 hours annually. Assuming
a maximum labor supply capacity of 52 weeks per year and 100 hours per week per individual, this

yields an average labor supply of 0.277 of the maximum capacity.

430n the sub-sample of households from whom we compute the productivity distribution, we find a correlation coefficient
of 0.60 between income and wealth, a figure consistent with the 0.58 found by Kuhn and Rios-Rull (2016) on the general

population.
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G.5 Other parameters

All parameters used in the calibration are summarized in Tables VI and VII below.

G.6 Stone-Geary calibration

Distribution of energy consumption Our objective is to estimate households’ subsistence level

(d) and relative preference for the dirty good (€). From the households’ first-order conditions, we have

Udht €Cht
Ue bt dh,t - dh,t

=DEt T TD4,

with g p ¢, Uene the marginal utility of energy and final good consumption of houschold h at time t.

Rearranging the previous equation, we obtain for each household h, and for each period ¢,

dnt(PEt+ TDt) = Jh,t(pE,t +7pyt) + €chy. (138)

We quantitatively investigate two scenarios: one where all households share the same subsistence level d,
and one where different groups share different subsistence levels. Under the assumption that households

all face the same subsistence level d, we can write the following regression from equation (138),

dn(pE + D) = Ba + Pech + pin, (139)

where pi, is the error term and ; and ¢ are the empirical counterparts to d(pg + 7p) and € in the
model. These parameters are estimated based on the cross-sectional distribution of energy and non-
energy expenditures (dn(pg + 7p) and cp,) observed in the Consumer Expenditure Survey (CEX). We
estimate regression (139) using OLS and abstracting from endogeneity issues as our aim is simply to
inform our structural model so that it is consistent with the observed distribution of energy expenditure

shares across groups.

In order to quantify the importance of heterogeneity in subsistence levels, we then use the estimated
value of € to compute—from equation (138)—household-specific values for dj,(pg + 7p) that we regress

against a set of binary variables denoting the subsistence type of different households,

dn(pe + 7p) = Z B;TL + 1, (140)
jed

where 7y, is the error term, and {Ii}je J is a set of subsistence-type binary variables defined as

1, if h €y,

0, otherwise.

To be consistent with the timing of DICE, we pool surveys from the 20 quarters between January
2011 and December 2015, for a total of 129,573 observations. Energy expenditures (d,(pg + 7p)) are

obtained by summing expenditures on gasoline and motor oil, electricity, natural gas, fuel oil, and

other fuels. Non-energy expenditures (cj,) are obtained by subtracting energy expenditures from total
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Table III: Distribution of Households Energy Expenditure Shares by Productivity Quintiles (Rows) and

Expenditure Share Terciles (Columns).

Expenditure share terciles

1st 2nd 3rd
1st 6.39% 10.80%  15.59%
2nd 6.47% 10.59%  15.21%
3th 6.08% 9.85%  14.59%
4th 5.65% 9.00%  13.73%
5th 5.10% 8.03%  12.86%

Productivity
quintiles

Note: The rows correspond to productivity (i.e. hourly wage) quintile groups. The columns correspond to energy
expenditure share tercile groups within productivity quintile groups. The numbers reported in these columns are the
average energy expenditure shares for each group. All groups are defined for a given month and year, and values correspond
to the average across all periods. Example: 6.39% in the 1st row, 1st column, means that among the people that belong
to the bottom 20% of the hourly wage distribution at the month x year they were interviewed, the 33.3% with lowest
energy shares spend on average 6.39% of their total expenditures in energy. Sample: CEX from 2011 to 2015, only workers

included, outliers excluded.

expenditures. In order to characterize the joint distribution of productivity and necessity types, we
compute the hourly wage following the same procedure as with the SCF. We first restrict our sample
to working households. We again compute the household annual wage by summing the income received
from salary or wages before taxes. We then compute the annual labor supply of the respondent and
its partner: we multiply the number of hours usually worked per week by the number of weeks worked
in the past twelve months, minus 3 weeks of imputed holidays. The household hourly wage is then
the ratio of the household’s annual wage over annual hours. Just like with the SCF data, this number
reflects how much household members were paid on average for each hour of work they supplied in the

past year.46

To avoid extreme values potentially driven by consumers’ misreporting of their expenditures, we
eliminate outliers that we define as the households whose energy expenditure shares are in the top or
bottom 10% of the distribution. Using this sub-sample, we divide households into five groups of hourly
wage quintiles. For each of the five groups, we again divide households into three terciles of energy
expenditure shares and compute the average energy expenditure share for each group. This provides
a table in which households are split into 15 groups of equal size.*” Since energy consumption shares
do not appear to be strongly determined by age among working households, we do not control for

generational differences. However, we control for seasonality and yearly variations that could lead to

46The bottom hourly wage is $6.59 and the top hourly wage is $110.12 (without generational adjustments).
4"We divide households into only 15 necessity groups to mitigate the potential overestimation of consumption het-

erogeneity due to measurement error at the household level in the CEX and to avoid negative values for the necessity

levels.
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Table IV: Estimated Parameters for Energy Preferences with Homogeneous Necessity.

Dependent variable:
energy consumption (d)

Be 0.0529
(0.000)
Ba 592.48
(3.78)
Observations 67,520
adjusted-R? 0.405

Note: The numbers give the estimated values of the parameters. Standard errors are reported in parentheses. [e
corresponds to the empirical counterpart of e in the model. 84 represents the empirical counterpart of the initial d in the

model. Sample: CEX from 2011 to 2015, only workers included, outliers excluded.

overestimate consumption heterogeneity. We proceed in the same way as with generational controls:
we group households based on their ranking relative to the households interviewed in the same month
and same year. The resulting distribution of initial energy shares by subsistence type j, {X,};es, is
presented in Table III, and the outputs of regressions (139) and (140) are given in Tables IV and V,
respectively.

The values of 3; reported in Table V provide the initial distribution of Jj (pe+7p). These estimates
are in dollars and need to be normalized in order to target an average expenditure share of 10.8% in
the model, as observed in the CEX. Relative to our baseline, we divide each of our ten productivity
groups into three necessity types and impute to each of the 30 groups the value of Jj corresponding to
its productivity quintile (two deciles pooled together) and necessity tercile. Finally, we set Jj,t to grow

over time following the same trajectory as the other aggregate variables on the balanced-growth path.

Additional parameter adjustments We target the share of emissions coming from households
direct energy consumption in the residential and transportation sectors based on the US EPA. In 2013
(our initial period), 17% of US emissions were due to the residential sector, 11% to passenger cars,
and 5% to light-duty trucks such as pickups, minivans, and SUVs (see EPA, 2017, Tables 2-12 and 2-
13). Assuming households are directly responsible for the largest part of these emissions, the emissions
coming from households’ energy consumption represent about 30% of US aggregate emissions. To
target this number, we adjust the energy share in the final good production function v from 0.04 to
0.17. Although this may seem like a significant change compared to our benchmark, we confirm that
using this higher value of v does not affect our results in the benchmark model. To remain consistent
with our previous targets for the initial labor supply, Frisch elasticity, initial emissions, share of utility
damages, and capital share relative to labor, we also adjust the values of ¢, 7, A2 2015, o, and a. Table

VIII reports the value of the adjusted parameters.
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Table V: Estimated Parameters for Type-Specific Subsistence Levels.

Dependent variable:
energy consumption (d)

B 128.7
(5.6)
B2,1 170.5
(5.6)
B3.1 148.1
(5.5)
B 111.0
(5.5)
Bs.1 0.2
(5.4)
B1,2 497.3
(5.6)
B2,2 599.1
(5.6)
B3.2 659.1
(5.6)
Ba2 651.8
(5.5)
Bs.2 617.1
(5.4)
P 811.9
(5.6)
Ba,3 1001.3
(5.6)
B33 1120.7
(5.6)
B3 1174.5
(5.5)
B5.3 1229.4
(5.5)
Observations 67,520
adjusted-R? 0.542

Note: The numbers give the estimated values of the parameters. Standard errors are reported in parentheses. Each
parameter (3,5 represents the empirical counterpart of the initial dj for an agent h belonging to the a' productivity
quintile, and the b*® energy-share tercile within this productivity quintile. Sample: CEX from 2011 to 2015, only workers

included, outliers excluded.
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Table VI: Calibration Summary: Climate Parameters (from DICE-2016).

Parameter Description Value |

Carbon stocks

Sath s Initial carbon concentration in atmosphere (in GtC) 851
S%% Initial carbon concentration in upper strata (in GtC) 460
Sko Initial carbon concentration in lower strata (in GtC) 1740
Sg}]t Equilibrium carbon concentration in atmosphere (in GtC) 588
Eland Initial COg emissions from land (GtCOg per year) 2.6
g Eland Decline rate of land emissions (per period) 0.115

Carbon cycle transition matrix

bi1 Carbon cycle coefficient 0.88
ba 1 Carbon cycle coefficient 0.047
b3 1 Carbon cycle coefficient 0
b1,2 Carbon cycle coefficient 0.12
ba o Carbon cycle coefficient 0.94796
b3.2 Carbon cycle coefficient 0.00075
b3 Carbon cycle coefficient 0
ba 3 Carbon cycle coefficient 0.005
b33 Carbon cycle coefficient 0.99925
Radiative forcing
K Forcings of equilibrium COg doubling (Wm-2) 3.6813
Fix. Initial forcings of non-CO2 GHG (Wm-2) 0.5
FE%0 2100 forcings of non-CO2 GHG (Wm-2) 1
JFEx Rate of convergence of F 1/17
Temperature
Zi Initial atmospheric temperature change (C since 1900) 0.85
Zho. Initial lower stratum temperature change (C since 1900) 0.0068
G Climate model coefficient 0.1005
(s Climate model coefficient 1.1875
(3 Climate model coefficient 0.088
Ca Climate model coefficient 0.025
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Table VII: Calibration Summary: Economic Parameters in the Baseline.

| Parameter Description Value Source
Preferences
5 Utility discount rate (per year) 1/(1.015) DICE-2016
o Inverse of IES 1.45 DICE-2016
nt Frisch elasticity of labor supply 0.75 Chetty et al (2011)
S Labor disutility coefficient 1.875 To target n" and hog1s
~ Labor disutility exponent 0.753 To target nF and hao1s
o Relative preference for the environment 7.88¢-05  Adapted from Barrage (2019)
Production damages
ai Damage intercept 0 DICE-2016
a9 Damage coefficient quadratic term 0.00175  DICE-2016 adjusted
as Damage exponent 2 DICE-2016
Production first sector
@ Return to scale on labor sector 1 0.3 DICE-2016
v Return to scale on energy sector 1 0.04 Golosov et al (2014)
) Depreciation rate on capital (per year) 0.1 DICE-2016
ro015 — 0 Initial net rate of return on capital 0.032 At steady state
Y2015 Initial output (in trillions 2015 USD) 70.807  World Bank (2011-2015)
hhi,2015 Initial share of labor in sector 1 0.977 To equate MPL across sectors
kk1.2015 Initial share of capital in sector 2 0.928 To equate MPL across sectors
Foo15 Initial industrial emissions (GtCOg per year) 35.85 DICE-2016
hoo15 Initial labor supply per capita 0.277 Computed from SCF
A12015 Initial TFP sector 1 141.9 To target Y2015
Production second sector
ap Return to scale on capital sector 2 0.403 Barrage (2019)
A22015 Initial TFP sector 2 86.9 To target Fagis
Abatement costs
Pyackstor Backstop price in 2015 (in $/tCOs) 550 DICE-2016
gphackstop  Decline rate backstop price (per period) 2.5% DICE-2016
co Exponent abatement cost function 2.6 DICE-2016
12015 Initial abatement share 0.03 DICE-2016
Government
Gi/Y; Government spending to GDP ratio 0.3030  IMF-GFS
Bao1s Initial net public debt to GDP ratio 0.2220 IMF-GFS
TH,2015 Initial tax rate on labor income 0.255 Trabandt & Uhlig (2012)
TK 2015 Initial tax rate on capital income 0.411 Trabandt & Uhlig (2012)
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Calibration Summary: Economic Parameters in the Baseline (continued).

Exogenous growth parameters
9A1 2015 Initial TFP growth rate sector 1 (per period) 0.076 DICE-2016
99A; , Decline rate TFP growth sector 1 (per year) 0.005 DICE-2016
9A2.2015 Initial TFP growth rate sector 2 (per period) 0.076 DICE-2016
994, Decline rate TFP growth sector 2 (per year) 0.005 DICE-2016

Noo1s Initial population (in millions) 1,309 World bank (2015)
Nmax Asymptotic population (in millions) 2,034 DICE-2016 US-adjusted
gN Rate of convergence of population 0.134 DICE-2016

Table VIII: Calibration Summary: Economic Parameters with Stone-Geary Preferences.

Parameter Description Value

€ Energy consumption utility exponent 0.053

d Initial average energy subsistence (GtCOg per year) 6.05

v Return to scale on energy sector 1 0.169

Q Return to scale on labor sector 1 0.259

S Labor disutility coefficient 1.881

~ Labor disutility exponent 0.728

A2 2015 Initial TFP sector 2 20.4
Qg Relative preference for the environment 7.92e—05

Notes: The table reports the values of the parameters used in the calibration of the extended version of the model with
two goods and Stone-Geary utility (see Section 6.2). The parameters are selected to obtain energy expenditure shares
consistent with the CEX and a share of aggregate emissions coming from households’ energy consumption consistent with
EPA’s estimates.
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H Additional quantitative results

H.1 Alternative damages

1 T T T T T 1 T T T T
—a— Baseline —a— Baseline
—0— Alternative Damages —0— Alternative Damages
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(a) Optimal labor income taxes

(b) Optimal capital income taxes

Figure 9: Optimal Income Taxes, Alternative Damages.

Notes: Figures show the path of second-best labor and capital income taxes for the baseline calibration (black) and for
the alternative-damages calibration (red). Initial tax rates (for 2015) are set exogenously to their current levels obtained
from Trabandt and Uhlig (2012).
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Figure 10: Optimal Carbon Taxes ($/tCOz), Alternative Damages.

Notes: Figure shows the path of second-best carbon taxes for the baseline calibration (black) and for the alternative-
damages calibration (red), expressed in dollars per ton of COz. The initial level (for 2015) is set exogenously to its current
level obtained from Nordhaus (2017).
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Figure 11: Temperature change: Optimal Path, Alternative Damages, and No Carbon Tax.

Notes: Panels show the path of atmospheric temperature change (Z{*) for the baseline calibration (black) and (a)

the alternative-damages calibration (red) or (b) the business-as-usual no-carbon-tax scenario (red), expressed in degrees
Celsius.
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Figure 12: Carbon Tax Decomposition, Alternative Damages.

Notes: The black line represents the second-best carbon tax normalized to 1. The red line shows what this tax would be
if the MCF was set to 1 in all periods, holding aggregates constant (see Proposition 2). The blue line shows what this tax
would be absent consumption inequalities, again holding aggregates constant (see Proposition 3). All taxes are computed
under the alternative-damages calibration.
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H.2 Third-best policies
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(a) Optimal labor income taxes (b) Optimal capital income taxes

Figure 13: Optimal Income Taxes, Given Labor Tax.

Notes: Figures show the path of second-best labor and capital income taxes for the baseline calibration (black) and for
the economy with given labor income taxes (red). Initial tax rates (for 2015) are set exogenously to their current levels
obtained from Trabandt and Uhlig (2012).
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(a) Optimal labor income taxes (b) Optimal capital income taxes

Figure 14: Optimal Income Taxes, Given Capital Tax.

Notes: Figures show the path of second-best labor and capital income taxes for the baseline calibration (black) and for
the economy with given capital income taxes (red). Initial tax rates (for 2015) are set exogenously to their current levels
obtained from Trabandt and Uhlig (2012).
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Figure 15: Optimal Carbon Taxes ($/tCO2), Given Income Taxes.

Notes: Figure shows the path of second-best carbon taxes for the baseline calibration (black) and for the economies
with fixed labor and capital income taxes (red), expressed in dollars per ton of COsz. The initial level (for 2015) is set
exogenously to its current level obtained from Nordhaus (2017). Differences with the baseline are due to the change in

tax formulas, as well as differences in individual and aggregate allocations.

Table IX: Government Budget Adjustment, Given Labor Income Taxes.

Revenue Source Revenue Use

Labor Capital Carbon Gov. Cons. Transfer Interest

No Carbon Tax 172%  5.5% 0.0% 15.9% 5.1% 2.0%
Optimal Carbon Tax 17.0%  5.3% 1.0% 15.7% 6.1% 2.0%
Change -02% —-02% 1.0% -0.2% 1.0% 0.0%

Notes: For given labor income taxes, the numbers represent the present value of each component of the government budget
constraint divided by the present value of GDP, in the scenarios without carbon taxes (first row) and with carbon taxes

(second row). The third row displays the difference between the two scenarios.
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Table X: Government Budget Adjustment, Given Capital Income Taxes.

Revenue Source Revenue Use

Labor Capital Carbon Gov. Cons. Transfer Interest

No Carbon Tax 31.5% 6.2% 0.0% 18.5% 16.6% 2.0%
Optimal Carbon Tax 30.7%  6.0% 1.3% 18.2% 17.4% 2.1%
Change -0.8% —0.1% 1.3% -0.3% 0.8% 0.0%

Notes: For given capital income taxes, the numbers represent the present value of each component of the government
budget constraint divided by the present value of GDP, in the scenarios without carbon taxes (first row) and with carbon

taxes (second row). The third row displays the difference between the two scenarios.

10th| -0.8 | -1.5 -2 22 | -23 | -21 -1.5 | -05 1.2 3.6 7 114 | 173

oth| -02 | -09 | 1.4 | 1.7 | 18 | 1.7 | 1.3 | -0.4 1 3 5.8 95 | 143

8th| 0.1 -06 | -11 -14 | 15 | -1.4 = -0.2 jiA 3 5.7 9.2 13.8

7th| 0.3 -04 | -08 | -11 -13 | 1.2 | -0.8 | -01 1.2 3.1 5.7 Ll 13.6

6th| 0.6 -0.1 -0.5 | -0.9 -1 -09 | -0.6 0.2 1.4 3.2 5.8 Ll 135

5th| 0.9 0.2 -03 | -06 | -0.7 | -0.7 | -0.3 0.4 1.6 3.4 5.9 92 | 134

Income Decile

4th | 1.3 0.5 0.1 -02 | -04 | -03 0 0.7 1.9 3.6 6.1 9.3 13.5

3rd| 1.7 1 0.5 0.2 0.1 0.1 0.4 1.1 23 4 6.4 95 | 13.6

2nd| 24 1.6 1.2 0.9 0.7 0.7 1 1.7 2.8 4.5 6.9 10 14

1st| 441 3.4 2.9 2.6 2.4 2.4 2.7 3.3 4.4 6.1 8.4 114 | 153

2020 2030 2040 2050 2060 2070 2080 2090 2100 2110 2120 2130 2140 2150 2160 2170
Generation

Figure 16: Period Welfare Gains (%), Given Labor Income Taxes.

Notes: For each decade and each income decile the table shows the welfare gains, in percentage of consumption, from
optimal carbon taxation relative to a scenario without carbon taxation. Numbers are computed under the baseline

calibration with given labor income taxes.
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10th

9th

8th

7th

6th

5th

Income Decile

4th

3rd

2nd

1st

-0.3 = 15 | 1.7 | -1.7 | 1.4 | -08 0.4 23 4.9 85 | 134
0.2 -0.6 = -13 | -1.3 | -141 -0.6 0.4 2 4.2 7.3 115
0.4 -04 | -08 | -1.1 =1l -1 -0.5 0.5 2 4.2 72 | 112
0.5 -02 | -06 | -0.9 -1 -0.8 | -0.3 0.6 2.1 4.2 71 11
0.7 0 -05 | -07 | -08 | -06 | -0.2 0.7 22 43 71 11
0.9 0.1 -0.3 | -05 [ -06 | -05 0 0.9 23 4.4 72 | 109
jiA 0.3 -0.1 -03 | -0.4 | -0.3 0.2 1 24 4.5 7.3 11
1.3 0.6 0.2 -0.1 -02 | -01 0.4 1.3 2.6 4.7 74 | 114
1.7 0.9 0.5 0.2 0.1 0.3 0.7 1.6 2.9 4.9 77 | 113
2.4 1.7 1.2 1 0.9 1 1.4 23 3.6 5.6 8.4 12
2020 2030 2040 2050 2060 2070 2080 2090 2100 2110 2120 2130 2140 2150 2160 2170

Generation

Figure 17: Period Welfare Gains (%), Given Capital Income Taxes.

Notes: For each decade and each income decile the table shows the welfare gains, in percentage of consumption, from

optimal carbon taxation relative to a scenario without carbon taxation.

calibration with given capital income taxes.
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H.3 Initial wealth inequality
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Figure 18: Optimal Income Taxes, Initial Wealth Heterogeneity and Exogenous Initial Capital Tax.

Notes: Figures show the path of second-best labor and capital income taxes for the baseline calibration (black) and for

the economy with initial wealth inequality (red). Initial tax rates (for 2015) are set exogenously to their current levels
obtained from Trabandt and Uhlig (2012).

250 T
—— Baseline
—0— Wealth Inequality

200

150

100

50

2020 2040 2060 2080 2100 2120
year

Figure 19: Optimal Carbon Taxes ($/tCO;), Initial Wealth Heterogeneity and Exogenous Initial Capital
Tax.

Notes: Figure shows the path of second-best carbon taxes for the baseline calibration (black) and for the economy with
initial wealth inequality (red), expressed in dollars per ton of COz. The initial level (for 2015) is set exogenously to its

current level obtained from Nordhaus (2017). Differences with the baseline are due to the change in tax formulas, as well
as differences in individual and aggregate allocations.
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Table XI: Government Budget Adjustment, Initial Wealth Heterogeneity.

Revenue Source

Revenue Use

Labor Capital Carbon Gov. Cons. Transfer Interest
No Carbon Tax 34.2%  3.2% 0.0% 16.4% 18.0% 1.5%
Optimal Carbon Tax 33.5%  3.2% 1.1% 16.1% 18.8% 1.5%
Change —-0.7%  0.0% 1.1% —0.3% 0.8% 0.0%

Notes: For the economy with initial wealth inequality and fixed initial capital income tax, the numbers represent the

present value of each component of the government budget constraint divided by the present value of GDP, in the

scenarios without carbon taxes (first row) and with carbon taxes (second row). The third row displays the difference

between the two scenarios.

10th

9th

8th

7th

6th

5th

Income Decile

4th

3rd

2nd

1st

6.1 6.1 6.1 6.2 6.2 6.3 6.3 6.5 6.7 -

5.5 55 5.5 5.5 5.6 5.6 5.6 5.7 5.8 6.4 7

5.4 5.4 5.4 5.5 5.5 5.5 5.5 5.6 5.6 6.2

5.4 5.4 5.5 5.5 5.5 5.5 5.5 5.6 5.6 5.9 17

55 55 55 55 55 55 5.6 56 5.7 6.1

5.5 5.6 5.6 5.6 5.6 5.6 5.6 5.6 57 6 165

5.6 5.7 5.7 5.7 5.7 5.7 5.7 5.7 5.8 6

5.8 5.8 5.8 5.8 5.8 5.8 5.9 5.9 5.9 6.1 16

6.1 6.1 6.1 6.1 6.1 6.1 6.1 6.1 6.2 6.5

6.8 6.8 6.8 6.8 6.8 6.8 6.8 6.8 6.8 7.1 155

1st 2nd 3rd 4th 5th 6th 7th 8th 9th o
Wealth Decile

Figure 20: Welfare Gains (%), Initial Wealth Heterogeneity and Exogenous Initial Capital Tax.

Notes: For each income and wealth decile the table shows the discounted welfare gains, in percentage of consumption,

from optimal carbon taxation relative to a scenario without carbon taxation. Numbers are computed under the calibration

with wealth inequality.
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H.4 Sensitivity of inequality effects to calibration choices
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Figure 21: How Inequality Effects Change with Different Levels of Labor Income Inequality, Different

Shares of Utility Damages in Total Damages, and Different ¢’s

Notes: The y-axis of the three figures represents the average percentage increase in optimal carbon taxes over the next

100 years that would result from ignoring labor income inequality. (a) To obtain different levels of labor income inequality

we take a convex combination between the vector of productivities from the baseline economy and a vector with equal

productivities. In the x-axis we have the weight put on the baseline vector. A weight of zero implies no labor income

inequality, and a weight of one implies the baseline level of inequality. (b) In the baseline calibration, we choose ag so

that 26% of total damages are utility damages. The x-axis represents different targets for the share of utility damages.

(¢) In the baseline calibration, we set o equal to 1.45, following DICE-2016. For each alternative o, we recalibrate v, g,
and A2 2015 to match the targets described in Table VII.
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I Algorithm to compute Ramsey policies

To solve the Ramsey problem numerically we apply an algorithm that directly uses the first-order

conditions obtained above. Here, we explain the procedure we used to obtain the benchmark results.

The idea behind the algorithm is simple. Given a policy (a sequence of taxes and transfers), standard

methods can be used to compute the associated equilibrium aggregates. Given equilibrium aggregates,

we can use the optimality conditions derived from the Ramsey problem to update the policy. We then

iterate on these two steps until convergence. The steps below explain the algorithm in more detail:

1.

Guess a policy: {Tm t, Tk t, It TEt}ioo and T

Compute the associated equilibrium aggregate allocation and prices: {c¢, he, K14, Ko, H1 ¢, Hoy,
Ey, i, Zy,re, we, pa g, Re}e2. We use a shooting algorithm but different standard methods could

be used, so we will not elaborate further on this part.

Compute terms that appear in the optimality conditions of the Ramsey planner: Compute M
using equation (69), then obtain w; and ¢;, for all 4, from equations (70) and (71)—equations
(57) and (58) can be used to obtain individual allocations and welfare. Next, obtain ® and ¥
using equations (67) and (68). Equation (61) then gives We, Wj,+, and Wy, for all ¢.

Update policy: Use equations (51), (52), (55), and (64) to update {Tm ¢ T, Trt, TEt} 1o Use

the government budget constraint to update T

Iterate: If the updated policy differs from the initial guess, return to step 2.

The initial balanced growth path is calibrated to 2015. One period in the model corresponds to 5 years.

We allow policy, climate, and exogenous variables to evolve over 45 periods, i.e., from 2015 to 2240.
After that, we give the model an additional 25 periods (2240 to 2365) to converge to the final balanced

growth path.
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