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1 Introduction

Economic inequality and environmental degradation are certainly two of the most critical issues facing
societies today. In order to address these two problems, economists have long argued for the use of fiscal
instruments: labor and capital taxes can be used to provide redistribution, and following the Pigouvian
principle a pollution tax can be used to internalize environmental externalities. However, pollution
taxes also have distributional implications as they reduce purchasing power and because individuals
are heterogeneously affected by environmental degradation. Conversely, capital and labor taxes also
affect the costs and benefits of improving the environment by reducing incentives to work and invest.
The goal of this study is to analyze how these instruments should be jointly optimized if society wishes
to tackle both inequality and environmental degradation.

We address this question from both a theoretical and a quantitative perspective. To do so, this
paper presents a dynamic second-best climate-economy model with heterogeneous agents. We use the
technique introduced by Werning (2007) to extend the climate-economy model of Barrage (2019) to
heterogeneous agents. In our model, individuals derive utility from consumption, leisure, and environ-
mental quality. The final consumption good is produced using energy as one of its inputs. Energy
production is polluting, and pollution leads to environmental degradation that affects productivity and
households’ utility. As in Barrage (2019), energy producers can reduce the emission intensity of their
output by engaging in costly abatement activities. Because of these costs, positive abatement will occur
only if producers also need to pay for their pollution, for example through a pollution tax. The govern-
ment thus faces multiple tasks at once: mitigating the pollution externality, providing redistribution,
and financing some exogenous government spending.

We model this as a Ramsey problem in which the government chooses the level of linear taxes—
in particular, taxes on labor and capital income, energy, and pollution—and a uniform lump-sum
transfer to maximize aggregate welfare. Because agents are heterogeneous but tax instruments are
anonymous, the government must rely on distortionary instruments to provide redistribution. We
analytically characterize optimal tax formulas and study the implications of heterogeneity for optimal
pollution taxation. We then use our model to examine how inequalities and distortionary taxation
affect the social cost of carbon (SCC) and the optimal carbon tax. We calibrate our climate model
following DICE 2016 (Nordhaus, 2017). On the economic side, we calibrate the fiscal system and agent
heterogeneity (first in productivity, later in wealth and preferences for energy consumption) to match
U.S. data. Conceptually, our quantitative analysis examines the optimal fiscal policy of the U.S. if they
accounted for the negative global impact of their emissions.1

Theoretically, we find that the optimal pollution tax is a modified Pigouvian rule that accounts
for tax distortions via the marginal cost of public funds (MCF). However, because uniform lump-
sum taxation is available, the MCF is no longer unambiguously above one. In fact, for the utility
specification we use in our quantitative analysis we show that the MCF is "on average" equal to 1, i.e.

1Specifically, we consider the problem of the U.S. government with its emissions scaled up to the global level. An
equivalent interpretation is that the world consists of a number of U.S. economies coordinating on their climate policies.
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it moves around 1 in the optimal tax system pushing the optimal pollution tax temporarily above and
below the Pigouvian level. These temporary tax distortions are driven by the costs the planner faces
when implementing its preferred allocation. Although these costs are on average null in the presence of
lump-sum taxation, they may not be in each period. We provide conditions under which these costs are
always null, and discuss the determinants of temporal variations in tax distortions when they are not.
Our theoretical results also highlight the role of consumption inequalities. When the MCF is equal to
unity, the second-best pollution tax is Pigouvian, but the Pigouvian tax is evaluated at the second-best
allocation. We show that consumption heterogeneity affects the Pigouvian tax ambiguously through the
opportunity cost of emission abatement. On the one hand, consumption is valued less in the presence of
inequalities because it disproportionately goes in the hand of richer agents with lower marginal utilities
of consumption. On the other hand, by concavity of the utility function, consumption inequalities
increase the average marginal utility of consumption, and thus the opportunity cost of abatement.
We show that with iso-elastic preferences, the latter effect dominates if and only if the intertemporal
elasticity of substitution is lower than 1, in which case inequalities reduce the value of the Pigouvian
tax.

Quantitatively, we find that the MCF plays an insignificant role. The second-best carbon tax starts
at about 0.5% below the SCC, and then fluctuates at about 0.1% above or below. The SCC is, however,
significantly affected by the presence of inequalities: consumption heterogeneity drives the SCC down
by about 4% in our baseline calibration. We then compare our optimal policy to the one of a “climate
skeptic” planner who optimizes fiscal instruments assuming climate change is exogenous, thus setting
the carbon tax to zero. We find that the additional revenue raised by the carbon tax is about equally
split between increasing transfers and reducing the labor income tax. Turning to welfare, we find that
the optimal carbon tax policy has moderately negative but progressive effects in the 21st century, and
very large positive but regressive effects afterwards.

We also examine extensions to our benchmark model. First, we show that the role of tax distortions
and inequalities are robust to a more severe calibration of the damage function that drives the social cost
of carbon about three times higher. Second, we theoretically characterize and quantitatively compute
third-best fiscal policies, i.e. optimal fiscal policies when either the labor or the capital income tax is
exogenously fixed at its current level. The effect of inequalities on the social cost of carbon remains
similar to our benchmark, although it becomes larger when the planner cannot reduce inequalities as
much as it would like to. Tax distortions still play an insignificant role through the MCF, but the
additional constraint on fiscal instruments now generates a new fiscal interaction term which enters
additively into the pollution tax formula. When the labor or capital income tax is exogenously fixed
below (resp. above) its optimal value, this term is negative (resp. positive) and the third-best tax
rule is set below (resp. above) the second-best level. Finally, we present a version of the model where
households consume an additional dirty good that uses energy as its only input. In order to capture
heterogeneous budget shares that vary with income, we assume agents’ preferences over these two goods
are non-homothetic. We show that as long as agents preferences are identical, the optimal tax formulas
remain unaffected. When agents display heterogeneous preferences over the dirty good however, the
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planner chooses to add a tax (resp. subsidy) to the dirty good if the agents it values relatively more
consume relatively less (resp. more) of it.

Our paper contributes to two strands of the literature. First, it contributes to the literature on the
optimal taxation of pollution. In a pioneering work, Pigou (1920) established that the first-best policy
response to an externality was to implement a tax equal to its social cost. An extensive literature
has then investigated optimal pollution taxation in a second-best environment. In a representative
agent framework, when the government does not have access to lump-sum transfers to finance public
expenditures, distortionary taxes typically raise the MCF above 1, and it becomes optimal to set
the pollution tax below the Pigouvian level (see e.g., Sandmo, 1975; Bovenberg and de Mooij, 1994;
Bovenberg and van der Ploeg, 1994).2 More recently, other papers have considered this problem with
heterogeneous agents and uniform lump-sum taxation (see e.g., Jacobs and de Mooij, 2015; Jacobs
and van der Ploeg, 2019), arguing that in this set-up the MCF is equal to 1 and the second-best tax
is set at the Pigouvian level.3 While these papers focus on static settings and model the pollution
externality in a stylized manner, the recent work of Barrage (2019) creates a critical bridge between
the climate-economy literature and the dynamic public finance literature. Her framework integrates
a climate-economy model in the spirit of Golosov et al. (2014) into the representative agent Ramsey
model of Chari and Kehoe (1999). In this setting, tax distortions again call for lower taxes. Our main
innovation relative to Barrage (2019) is to introduce heterogeneous agents, which we see as critical
for two reasons. First, this allows us to jointly study environmental and equity issues. In addition of
the importance of equity in normative analysis, recent experience has shown that the distributional
effects of environmental policies were also critical to ensure their public support.4 Second, agents’
heterogeneity provides a sound foundation for the study of second-best policies. In representative
agent settings, the second-best environment arises because lump-sum transfers are assumed unfeasible:
governments therefore need to rely on distortionary taxes to finance their expenditures. Yet, in practice
lump-sum transfers are feasible as they simply correspond to the intercept on a tax scheme.5 With
heterogeneous agents, lump-sum transfers are no longer excluded as long as they do not discriminate
between agents. Although this non-distortionary source of public income is available, governments now
want to use distortionary taxes to provide redistribution. While our optimal tax formulas resemble
the ones in Barrage (2019), the effect of tax distortions is now more ambiguous. Quantitatively, we
find that variations in the MCF play an insignificant role, hence the optimal pollution tax is almost
Pigouvian. However, we also highlight how inequalities affect the social cost of pollution, and find that

2For further references on second-best pollution taxation in representative agents models, see Barrage (2019).
3Other papers jointly studying optimal pollution taxation and redistribution include, among others, Pirttilä and Tuo-

mala (1997), Cremer et al. (1998, 2003), Micheletto (2008), and Kaplow (2012).
4Public protests against policy-induced increases in energy prices have recently occurred in many countries worldwide.

For instance, in France the Yellow Vests movement strongly opposed carbon tax increases due to the expected impact
on households’ purchasing power, leading to the abandonment of the scheduled carbon tax reforms (Douenne and Fabre,
2022).

5Recent policy proposals such as the carbon tax and dividend advocated by the Climate Leadership Council even call
for using such instruments to redistribute the carbon tax revenue. See Economists Statement on Carbon Dividends signed
by 3,354 American economists in the Wall Street Journal (2019) in support of carbon pricing with lump-sum rebates.
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the optimal carbon tax is at least 4% lower than what it would be absent inequalities. Finally, we show
that with heterogeneous agents the weak double dividend hypothesis (see e.g., Goulder, 1995) needs to
be qualified. At the optimum, the welfare gains from a marginal reduction in tax distortions is equal to
the marginal cost from increasing inequalities, hence the optimal policy divides the carbon tax revenue
about equally between reducing tax distortions and providing redistribution.6

Second, this paper contributes to the analysis of the distributional effects of environmental taxes
in general equilibrium. An extensive literature has analyzed the distributional effects of environmental
taxes through the consumption channel (for a recent survey, see Pizer and Sexton, 2019), generally
pointing to regressive effects since the consumption share of polluting goods tends to decrease with
income (Levinson and OBrien, 2019). More recently, several authors have also analyzed the hetero-
geneous incidence of environmental taxes on households’ income. While a number of papers found
progressive effects due to the larger negative impact of the policy on capital income relative to labor
income and transfers (see e.g. Rausch et al., 2011; Fullerton and Monti, 2013; Williams et al., 2015;
Goulder et al., 2019), the recent work of Känzig (2021) shows—exploiting exogenous shocks to the
EU-ETS price—that carbon taxation has a larger impact on poor households’ income in the U.K. be-
cause these households are over-represented in pro-cyclical sectors that are more impacted by the tax.
Many papers have also shown that the incidence of carbon taxation largely depends on how the tax
revenue is recycled. In particular, Fried et al. (2018) study the economic impact of introducing a carbon
tax with three alternative revenue-recycling schemes in a quantitative OLG model with heterogeneity
within-generations. They show that while a uniform lump-sum rebate is more costly than reductions
of the labor or capital tax rates in steady state, it is more favorable to the current generation and
leads to less adverse distributional effects.7 Finally, a few papers have considered the heterogeneous
environmental benefits of climate change mitigation, between generations (e.g., Leach, 2009; Kotlikoff
et al., 2021) or between regions (e.g., Hassler and Krusell, 2012; Krusell and Smith, 2015; Cruz and
Rossi-Hansberg, 2021). In this paper, we jointly study the financial and environmental impacts from
optimal pollution taxation, both over time and between heterogeneous agents. We find that accounting
for environmental benefits, current rich households lose the most from carbon taxation, but future rich
households win the most.

The rest of the paper is organized as follows. Section 2 presents the model, and Section 3 the
optimal tax formulas. Section 4 describes our calibration and Section 5 presents our main quantitative
exercise. Extensions of our main framework are provided in Section 6. Section 7 concludes.

6This result echoes the recent findings of Fried et al. (2021) who study the optimal recycling policy for an exogenous
carbon tax introduced in a sub-optimal tax system. In their model with heterogeneity between and within generations,
they find that two-third of the carbon tax revenue should be used to reduce taxes on capital income, one third to provide
redistribution.

7Leach (2009), Rausch (2013), and Rausch and Yonezawa (2018) also quantitatively investigate the distributional effects
from revenue recycling across generations, with a representative agent for each generation. Other papers use a dynamic
model to compute the incidence of carbon tax reforms, and simulate the distributional effects across heterogeneous agents
in the initial period (Williams et al., 2015) or over different time intervals (Goulder et al., 2019). All these papers consider
exogenous reforms and—with the exception of Leach (2009)—ignore environmental effects.
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2 Model

The model builds on Barrage (2019): one sector of the economy produces a final good using capital,
labor, and energy that is produced in the second sector. Energy production generates pollution that
leads to environmental degradation, which in turn affects productivity and households’ utility. The
government finances an exogenous stream of expenditures using taxes on labor income, capital income,
energy, and pollution, as well as a lump-sum tax. The key differences with Barrage (2019) are that in
our model, agents are heterogeneous and the government has access to a (non-individualized) lump-
sum tax or transfer. Consequently, although the government has access to a non-distortionary source
of revenue, it uses distortionary taxes for redistributive purposes.

2.1 Households

We consider an economy populated by a continuum of infinitely-lived agents divided into types i ∈ I of
size πi. The total population size in period t is Nt. Each agent, or dynasty of type i ∈ I ranks streams
of consumption of a final good ci,t, labor supply hi,t, and environmental degradation Zt according to
the preferences

∞∑
t=0

βtNtu (ci,t, hi,t, Zt) . (1)

In our benchmark, agents are assumed to differ in two ways: their productivity levels, ei, and their
initial asset holdings, ai,0. Productivity levels are normalized such that

∑
i πiei = 1. Agents’ assets are

composed of government debt and capital and we denote respectively bi,t and ki,t the number of units
of these assets held by agents of type i between periods t − 1 and t, with ai,t = bi,t + ki,t. Aggregates
are denoted without the subscript i: Ct = Nt

∑
i πici,t, Ht = Nt

∑
i πieihi,t, Bt = Nt

∑
i πibi,t, and

Kt = Nt
∑

i πiki,t. In addition, per period average consumption and hours worked are denoted by
ct =

∑
i πici,t = Ct/Nt and ht =

∑
i πieihi,t = Ht/Nt.

Let pt denote the price of the consumption good in period t in terms of consumption in period 0 (so
that p0 = 1), wt and rt denote the real wage and the rental rate of capital in period t, and Rt its gross
return (between t − 1 and t). Finally, let τH,t and τK,t represent the labor and capital income taxes,
and Tt the aggregate uniform lump-sum transfers received by all households in period t. Given ki,0, bi,0,
prices {pt, wt, Rt}∞t=0 and policies {τH,t, τK,t, Tt}∞t=0, agents of type i choose {ci,t, hi,t, ki,t+1, bi,t+1}∞t=0

to maximize (1) subject to the budget constraint

∞∑
t=0

ptNt (ci,t + ki,t+1 + bi,t+1) ≤
∞∑
t=0

ptNt ((1− τH,t)wteihi,t +Rt (ki,t + bi,t) + Tt/Nt) ,

where Rt ≡ 1 + (1− τK,t) (rt − δ), for t ≥ 0. Here, we use the convention that the capital income tax
is levied on the rate of return net of depreciation, but none of our results depend on it. No arbitrage
requires pt = Rt+1pt+1, and defining T ≡

∑∞
t=0 ptTt as the present value of lump-sum transfers, the
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budget constraint can equivalently be written as
∞∑
t=0

ptNt

(
ci,t − (1− τH,t)wteihi,t

)
≤ R0N0ai,0 + T. (2)

From the first order conditions of agent i’s problem we have

βt uc,i,t
uc,i,0

= pt, ∀ t ≥ 0,

uh,i,t
uc,i,t

= − (1− τH,t) eiwt, ∀ t ≥ 0,

which holds across all agents. To reduce notations, we use subscripts x, i, t to denote partial derivatives
with respect to argument x for agent of type i at time t, and we keep the arguments of the derivatives
implicit.

2.2 Final-good sector

As in Barrage (2019), there are two production sectors. In the final-good sector, indexed by
1, a consumption-capital good is produced with a concave, constant returns to scale technology,
F (K1,t,H1,t, Et), that uses capital K1,t, labor H1,t, and energy Et. The total factor productivity
is given by A1,t and the function D (Zt) controls the damages to production implied by environmental
degradation, with D′(Zt) > 0. The output Y1,t is given by

Y1,t = (1−D(Zt))A1,tF (K1,t,H1,t, Et).

The first order conditions for the firm problem are:

rt = (1−D (Zt))A1,tFK,t, ∀ t ≥ 0, (3)

wt = (1−D (Zt))A1,tFH,t, ∀ t ≥ 0, (4)

pE,t = (1−D (Zt))A1,tFE,t, ∀ t ≥ 0. (5)

Here, pE,t denotes the price of energy in period t. Because there are constant returns to scale and
inputs are paid according to their marginal productivity, final goods producers make zero profits.

2.3 Energy sector

The energy sector, indexed by 2, produces energy Et using capital K2,t and labor H2,t with a constant
returns to scale technology so that

Et = A2,tG (K2,t,H2,t) , ∀ t ≥ 0. (6)

Energy producers can provide a fraction µt of energy from clean technologies, at additional cost
Θt (µt, Et), which satisfies Θµ,t,ΘE,t,Θµµ,t > 0, ΘEE,t ≥ 0 and Θt(0, Et) = Θt(µt, 0) = 0. Convexity in
Θt(·, ·) captures decreasing returns to abatement. This function nests the one used in Barrage (2019),
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where Θt (µt, Et) = Θt (µtEt), and in Nordhaus (2017), where it is equivalent to Θt (µt, Et) = Θt (µt)Et.
In our calibration, we opt for the latter specification in order to follow DICE as closely as possible.
Total profits from energy production are given by

Πt = (pE,t − τI,t)Et − τE,t (1− µt)Et − wtH2,t − rtK2,t −Θt (µt, Et) ,

where τI,t denotes the excise intermediate-goods tax on total energy and τE,t denotes the excise tax
on pollution emissions EM

t = (1− µt)Et. Firms maximize profits subject to the technology constraint
given by equation (6) by choosing the abatement term µt, capital K2,t, and labor H2,t. The first order
conditions are

rt =
(
pE,t − τI,t − τE,t(1− µt)−ΘE,t

)
A2,tGK,t, ∀ t ≥ 0, (7)

wt =
(
pE,t − τI,t − τE,t(1− µt)−ΘE,t

)
A2,tGH,t, ∀ t ≥ 0, (8)

τE,t =
Θµ,t

Et
, ∀ t ≥ 0. (9)

If there is positive abatement and Θt(·, ·) is convex in its second argument, profits in the energy sector
will be positive. For simplicity, we assume that these profits are taxed at a confiscatory rate τπ,t = 1.
Doing so is typically optimal, as taxing pure profits does not generate distortions and income from
shareholdings tends to be unequally distributed. In our calibration in Section 4, the abatement cost
function is strictly convex in its first argument and linear in the second, hence profits are null.

Capital and labor are mobile across sectors, so market clearing requires

K1,t +K2,t = Kt, ∀ t ≥ 0, (10)

H1,t +H2,t = Ht, ∀ t ≥ 0. (11)

2.4 Government

Each period the government finances its expenses Gt and lump sum transfers Tt with proportional
income taxes on capital τK,t and labor τH,t, total energy taxes τI,t, and emissions taxes τE,t. In
addition, profits are taxed at a confiscatory rate: τπ,t = 1. The government’s budget constraint is

R0B0 + T +
∑
t

ptGt =
∑
t

pt
(
τH,twtHt + τK,t (rt − δ)Kt + τI,tEt + τE,tE

M
t +Πt

)
. (12)

Although the instruments levied are proportional, the tax system is progressive when transfers are
positive. As shown in Piketty and Saez (2013) and Dyrda and Pedroni (forthcoming), an affine tax
system provides a good approximation of actual tax systems such as the one of the U.S.

2.5 Environmental degradation

The environmental variable is affected by the history of pollution emissions EM
t = (1− µt)Et, initial

conditions S0, and the history of exogenous shifters ηt according to

Zt = J
(
S0, E

M
0 , ..., EM

t , η0, ..., ηt
)
, ∀ t ≥ 0. (13)
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In our calibration below, Z represents the global mean temperature that is the outcome of the climate
model J . In this section and the next, we do not further specify this function and our theoretical results
can apply to any kind of pollution externality affecting production and households’ utility.

2.6 Competitive equilibrium

Definition 1 Given a distribution of assets {ai,0}, aggregate capital K0 and aggregate bond holdings
B0, a competitive equilibrium is a policy {τH,t, τK,t, τI,t, τE,t, Tt}∞t=0, a price system {pt, wt, rt, pE,t}∞t=0

and an allocation
{
(ci,t, hi,t)i , Zt, Et,K1,t,K2,t,Kt+1,H1,t,H2,t,Ht

}∞
t=0

such that: (i) agents choose{
(ci,t, hi,t)i

}∞
t=0

to maximize utility subject to budget constraint (2) taking policies and prices (that
satisfy pt = Rt+1pt+1) as given; (ii) firms maximize profits; (iii) the government’s budget constraint
(12) holds; (iv) markets clear: the resource constraints (6), (10), (11), and (13) hold, and

Ntct +Gt +Kt+1 +Θt (µt, Et) = (1−D (Zt))A1,tF (K1,t,H1,t, Et) + (1− δ)Kt, ∀ t ≥ 0. (14)

3 Optimal tax rules

In this section, we use the technique introduced by Werning (2007) to express agents’ equilibrium allo-
cations as a function of aggregate variables, and solve the Ramsey problem as a function of aggregates
instead of their full distributions.

3.1 Ramsey problem

A simple characterization of equilibrium Because the government sets linear tax rates, all indi-
viduals face the same marginal rate of substitution between consumption and leisure. Consequently, the
distribution of individual allocations (cit, hit) is efficient given aggregates (ct, ht, Zt), where ct = Ct/Nt

and ht = Ht/Nt denote the average consumption and hours worked in period t. Following Werning
(2007), it is therefore possible to split up the optimal tax problem in two steps. The first is to deter-
mine individual allocations given aggregates, and the second is to determine the aggregates. Starting
with the first step, denote by φ ≡ {φi} a set of market weights with φi ≥ 0. Using the property that
individual allocations are efficient given aggregates, we can characterize these allocations by solving the
following static sub-problem for each period t:

U (ct, ht, Zt;φ) ≡ max
ci,t,hi,t

∑
i

πiφiu (ci,t, hi,t, Zt) ,

s.t.
∑
i

πici,t = ct and
∑
i

πieihi,t = ht.
(15)

Here, U (ct, ht, Zt;φ) denotes the indirect aggregate utility function, computed using market weights
and aggregates. In Section 3.4 below, we introduce a functional form for households’ utility function in
order to obtain expressions for U (ct, ht, Zt;φ), as well as for cmi,t and hmi,t, solutions to problem (15). For
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now we choose to keep preferences unspecified to analyze optimal tax formulas with more generality.
To reduce the notation burden and ease tractability, we make the simplifying assumption that utility
is additively separable in Z, i.e. that we can write

u (ci,t, hi,t, Zt) ≡ ũ (ci,t, hi,t) + û(Zt).

Implementability condition Applying the envelope theorem to problem (15) and using consumers’
first order conditions we get

Uh,t

Uc,t
=

uh,i,t
uc,i,tei

= −wt (1− τH,t) ,

and
Uc,t

Uc,0
=

uc,i,t
uc,i,0

=
pt
βt

,

Using these relationships to substitute out for prices in agents’ budget constraints, for any agent i we
can derive an implementability condition that depends only on the aggregates ct and ht, and market
weights φ

Uc,0

(
R0N0ai,0 + T

)
≥

∞∑
t=0

Ntβ
t

(
Uc,tc

m
i,t

(
ct, ht;φ

)
+ Uh,teih

m
i,t

(
ct, ht;φ

))
, ∀ i. (16)

The following Proposition follows immediately from the arguments above.

Proposition 1 An aggregate allocation {ct,H1,t,H2,t,K1,t,K2,t, Et, Zt, µt}∞t=0 can be supported by a
competitive equilibrium if and only if the market clearing conditions (10), and (11) hold, the resource
constraints (6), (13), (14) hold and there exist market weights φ and a lump-sum tax T such that the
implementability conditions (16) hold for all i ∈ I. Individual allocations can then be computed using
functions cmi,t and hmi,t, prices and taxes can be computed using the usual equilibrium conditions.

Problem Let λ ≡ {λi} be the planner’s welfare weight on type i, with
∑

i πiλi = 1. The Ramsey
planner problem is

max
{ct,H1,t,H2,t,K1,t,K2,t,

Et,Zt,µt}∞t=0,T,φ

∑
t,i

Ntβ
tπiλiu

(
cmi,t
(
ct, ht;φ

)
, hmi,t

(
ct, ht;φ

)
, Zt

)
(17)

subject to

Uc,0

(
R0N0ai,0 + T

)
≥

∞∑
t=0

Ntβ
t
(
Uc,tc

m
i,t

(
ct, ht;φ

)
+ Uh,teih

m
i,t (ct, ht;φ)

)
, ∀ i,

FK,tGH,t = GK,tFH,t, ∀ t ≥ 0,

Ntct +Gt +Kt+1 +Θt (µt, Et) = (1−D (Zt))A1,tF (K1,t,H1,t, Et) + (1− δ)Kt, ∀ t ≥ 0,

Et = A2,tG (K2,t,H2,t) , ∀ t ≥ 0,

Zt = J
(
S0, E

M
0 , ..., EM

t , η0, ..., ηt
)
, ∀ t ≥ 0,

K1,t +K2,t = Kt, ∀ t ≥ 0,

H1,t +H2,t = Ntht, ∀ t ≥ 0.
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The first of these is the implementability condition, which must hold for each agent i. It is written
solely in terms of allocation variables and states that the present value of consumption equals the
present value of labor income, initial assets and lump-sum transfers. The second constraint states that
the marginal rate of technical substitution between capital and labor is the same in both sectors. It is
a restriction imposed on the allocation which reflects that the government does not use sector-specific
instruments and factors are mobile across sectors. The other constraints reflect market clearing for
capital, labor and goods, and technological constraints.

To simplify the exposition, we assume for now that there is no initial wealth inequality, that is
ai,0 = aj,0 for all i and j. An equivalent interpretation is that there is initial wealth inequality, but that
all wealth is expropriated by the planner. This can be done by taxing it directly, R0 = 0, or through
a combination of consumption and labor taxes: see Werning (2007) for a discussion.8 We relax the
assumption that there is no initial wealth inequality, or equivalently that all wealth can be expropriated,
and study the implications for optimal taxes in Section 6.2. Without initial wealth inequality and with
the ability to adjust lump-sum transfers, the optimal level of τK,0 is indeterminate. We therefore assume
that τK,0 is taken as given by the Ramsey planner.9

3.2 General formulas

Capital and labor income taxes From the planner’s first order conditions, the labor and capital
income taxes are determined by

τH,t = 1−
Uh,t

Uc,t

Wc,t

Wh,t
,

and
Rt+1

R∗
t+1

=
Wc,t+1

Wc,t

Uc,t

Uc,t+1
,

where the pseudo-utility function W is defined as

W (ct, ht, Zt;φ, θ, λ) ≡ V (ct, ht, Zt;φ, λ) +
∑
i

πiθiICi(ct, ht, φ),

with
V (ct, ht, Zt;φ, λ) ≡

∑
i

πiλiu
(
cmi,t (ct, ht;φ) , h

m
i,t (ct, ht;φ) , Zt

)
,

the aggregate utility based on the planner’s weights,

ICi(ct, ht, φ) ≡ Uc,tc
m
i,t (ct, ht;φ) + Uh,teih

m
i,t (ct, ht;φ) , (18)

8Levying a confiscatory tax on all initial wealth is generally optimal if assets and productivity are positively correlated.
In that case, taxing wealth reduces inequality without generating any distortions.

9If there is initial wealth inequality and the government can adjust a lump-sum transfer, the level of τK,0 is no longer
indeterminate. However, when studying the impact of initial wealth inequality on optimal taxes in Section 6.2, we also
treat τK,0 as given. The reason for doing so is that optimizing over τK,0 allows the planner to confiscate all initial wealth,
which immediately gets rid of all initial wealth inequality as well.
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the difference between agent i spending on consumption and labor income in period t as it appears in
its implementability constraint, and πiθi the Lagrange multiplier on the implementability constraint of
agent i in the Ramsey problem. These formulas are therefore the same as the ones obtained in Werning
(2007). The reason is that the environmental variable enters additively to the problem and does not
directly affect the labor and capital tax rules.

Excise taxes on energy and emissions The planner’s first order conditions together with firms
equilibrium conditions give

τI,t = 0.

Thus, as long as labor, capital, profits and pollution can be taxed, there is no point in distorting
production decisions. This result can also be found in Barrage (2019) and goes back to the production
efficiency theorem of Diamond and Mirrlees (1971). Turning to the pollution tax we have

τE,t =
∞∑
j=0

βj

(
Vc,t+j +

∑
i πiθiMICi,t+j

Vc,t +
∑

i πiθiMICi,t
D′

t+jA1,t+jFt+j −
Nt+jVZ,t+j

Vc,t +
∑

i πiθiMICi,t

)
JEM

t ,t+j , (19)

where MICi,t ≡ (∂ICi,t/∂ct), and where the arguments to the production function Ft have been
dropped to simplify notations. The term Vc,t +

∑
i πiθiMICi,t appears from the substitution of Wc,t =

ν1,t, where ν1,t is the Lagrange multiplier on the planner’s resource constraint. When the pollution tax
increases, abatement increases, which increases the scarcity of the final good. The opportunity cost of
increasing the pollution tax therefore corresponds to the marginal cost of increasing the final good’s
scarcity, which is equal to the marginal utility from consumption as computed using the planner’s
weights (Vc,t) minus a term which captures the marginal cost for the planner to implement its preferred
allocation (−

∑
i πiθiMICi,t).

This formula holds both for the first and second-best. Still, the optimal pollution tax may differ
between these two fiscal environments for three reasons: the value of the marginal implementation
cost, the path of aggregate variables, and the distribution of individual allocations all depend on fiscal
policies.

3.3 Comparison with first-best

Social cost of the externality The first potential difference between the first and second-best
pollution tax lies in the value of the marginal implementation cost, −

∑
i πiθiMICi,t. In the first-best,

the first order conditions with respect to individualized lump-sum transfers give

θi = 0, ∀i.

It follows that the planner can achieve its preferred allocation at no cost, and the optimal pollution tax
simplifies to

τFB
E,t =

∞∑
j=0

βj

(
Vc,t+j

Vc,t
D′

t+jA1,t+jFt+j −
Nt+jVZ,t+j

Vc,t

)
JEM

t ,t+j .
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This formula illustrates the well-known Pigouvian principle according to which the optimal corrective
tax is equal to the social cost of the externality: the tax corresponds to the discounted sum of marginal
(utility and production) damages valued at the marginal utility of consumption. Turning to the second-
best case, where only a uniform lump-sum transfer is available in each period, the first order condition
with respect to the transfer gives ∑

i

πiθi = 0.

Thus, at the second-best, the sum of the multipliers associated with the implementability conditions
is zero, but the marginal cost for the planner to implement its preferred allocation in a given period
(−
∑

i πiθiMICi,t) is not necessarily zero. In particular, we have

−
∑
i

πiθiMICi,t = −cov(θi,MICi,t), (20)

hence the marginal implementation cost is zero if and only if θi and MICi,t are uncorrelated. As we
show in Appendix A.4.3, the sign of this term also determines the sign of the marginal cost of public
funds (MCF) relative to 1. Indeed, if we define the MCF as the ratio of the public to the private
marginal utility of consumption, we have

MCFt = 1 +
cov(θi,MICi,t)

Vc,t
,

and the MCF is above 1 if and only if the covariance term is positive.10

Determinants of the marginal implementation cost Intuitively, −θi represents the shadow
cost of implementing the desired allocation for agent i, which can be understood as the increase in
implementation cost resulting from an additional unit of lump-sum transfer received by this agent.
While this marginal cost is on average null, it may be positive for some agents and negative for others.
Using functional forms below, we show that −θi is negative for households who are valued relatively
more by the market than by the planner as compared to an average household. The second term,
MICi,t, represents how the difference between the agent current consumption and current labor income
changes when more resources are available for consumption. At the optimum, agents’ implementability
conditions must be binding, hence

∞∑
t=0

Ntβ
tICi(ct, ht, φ) = Uc,0(R0ai,0 + T ). (21)

10Jacobs and de Mooij (2015) and Jacobs and van der Ploeg (2019) use a definition of the marginal cost of funds that
takes into account fiscal externalities resulting from income effects. They find that the marginal cost of funds equals one
at the optimal tax system, owing to the fact that the government can optimize a lump-sum transfer. However, because as
in Barrage (2019) we optimize over the allocation variables directly rather than over tax instruments, it is more convenient
to define the marginal costs of funds as the ratio between the multiplier on the government budget constraint and the
average marginal utility of consumption computed using Pareto weights, which Jacobs and de Mooij (2015) refer to as the
traditional measure of the MCF.

13



When there is no initial wealth inequality, or when initial wealth is expropriated—which, as we have
shown, is optimal as long as initial wealth and productivity are positively correlated—then for any i, j,
R0ai,0 = R0aj,0, which implies that the discounted sum of ICi,t is invariant across types. Intuitively,
this condition means that with equal initial wealth (or initial wealth expropriation) and a uniform
lump-sum transfer, the discounted sum of expenditures minus the discounted sum of labor incomes
must be the same for everyone. From equations (20), the marginal implementation cost will differ from
zero only if individuals’ expenditures minus labor income are responsive to contemporaneous changes
in aggregate consumption ct, and if these responses are heterogeneous. In particular, when preferences
are such that individuals’ expenditures minus labor income can be expressed as a constant fraction of
aggregates, i.e. if we can write

ICi(ct, ht, φ) = mi
˜IC(ct, ht, φ), (22)

then from (21) we have that for any types i, j and any period t, mi = mj and MICi,t = MICj,t. From
(20), this implies that in all periods the marginal implementation cost is null, the MCF is equal to 1, and
the second-best tax is set at the Pigouvian level. The reason is that increasing the pollution tax—and
thereby leaving less resources available for consumption—affects the costs from satisfying (typically)
poor agents’ implementability constraint just as much as the benefits from satisfying (typically) rich
agents’ implementability constraint, so general fiscal motives do not affect the opportunity cost from
corrective taxation in this case.

Timing of abatement and damages Going back to the pollution tax formula (19), the marginal
implementation cost may imply deviations from the social cost of pollution for two reasons. First,
a positive cost in period t means that that the opportunity cost of pollution abatement is lower in
that period, which pushes the tax above the social cost of pollution. This effect is captured by the
denominator of the formula. Second, a positive cost in period t+j also means that having less production
damages in that period is worth less, which pushes the tax below the social cost of pollution. This
effect is captured by the numerator of the term multiplying production damages.

Focusing on production damages, we see that the marginal implementation cost operates as a form
of discounting. If this cost increases over time, consumption is valued relatively more in the present
than in the future, hence the pollution tax is set at a lower level. Conversely, a declining path for this
term implies a higher tax. Turning to the utility part, the effect is again ambiguous and the tax is set
to a higher (resp. lower) level to the extent that the marginal implementation cost is positive (resp.
negative) in periods where the present value of utility damages are high.

Differences in allocations When the marginal implementation cost is null, the first and second-best
tax formulas coincide, and they are both equal to the social cost of pollution. Still, the actual tax levels
may differ for two reasons.

The first reason is that when the tax system is different, aggregate variables generally take different
values. When capital and labor are taxed, labor supply and investments are expected to be lower, hence
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output, consumption, and pollution are also expected to be lower along the optimal path. Since the
pollution tax level is determined by the trade-off between the marginal utility of consumption and the
marginal utility of pollution abatement, if both pollution and consumption are lower, the optimal tax
will generally be set at a lower level since utility is concave in consumption and convex in pollution.11

The second reason is that the distribution of individual allocations also differs depending on the
fiscal environment. Because individualized lump-sum transfers are not feasible in the second-best, there
are generally more consumption inequalities. The welfare gains from leaving more resources available
for agents’ consumption by decreasing the pollution tax may then be higher or lower compared to the
first-best depending on the curvature of agents’ utility function. As shown in Appendix A.4.3, we have

Vc,t =
∑
i

πiλi
uc,i,tci,t

ct
.

In the presence of inequalities, an increase in aggregate consumption is valued more to the extent that
the average marginal utility is higher (by concavity of the utility function), but it is valued less to the
extent that the inflow in consumption disproportionately goes in the hands of richer households with
lower marginal utilities. Our analysis of functional form expressions below provides an illustration of
these two opposite mechanisms, showing that with iso-elastic preferences, they perfectly offset each
other when the intertemporal elasticity of substitution (IES) is equal to 1.

3.4 Functional form expressions

Specification In the next section, we quantitatively analyze the optimal fiscal policies presented
above. Before turning to these quantitative results, it is useful to investigate the theoretical predictions
using the functional form for utility chosen in our quantitative analysis. Suppose agents have preferences
over consumption, leisure and environmental degradation, with the following period utility function

u (ci, hi, Z) =
(ci(1− ςhi)

γ)1−σ

1− σ
+

(
1 + α0Z

2
)−(1−σ)

1− σ
. (23)

Capital and labor income taxes Without loss of generality, we can add a normalization constraint
for the market weights to the Ramsey problem presented above (see Appendix A.4.2). We can then
express the formulas for labor and capital income taxes as follows

τH,t =
Ψς (1− ςht)

−1

Φ+Ψς (1− γ (1− σ)) (1− ςht)
−1 ,

and
Rt+1

R∗
t+1

=
Φ−Ψςγ (1− σ) (1− ςht+1)

−1

Φ−Ψςγ (1− σ) (1− ςht)
−1 ,

11This result also depends on the law of motion of environmental degradation: if each additional unit of pollution
emitted increases degradation by less than the previous unit, the marginal abatement benefits could be lower for higher
levels of pollution.
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with

Φ =
∑
j

πj
λj

φj
+
(
1− (1 + γ)(1− σ)

)
cov(λi/φi, ωi),

Ψ = −cov(λi/φi, ei)

ς
,

where ∀t, ωi = ci,t/ct. We see that both the labor and the capital income tax rates are zero in
three special cases: (i) when there is no agent heterogeneity, (ii) when the planner’s and the market’s
weights are perfectly aligned, and (iii) when agents’ productivity are uncorrelated with the relative
social weights. Intuitively, the first case corresponds to the outcome of a representative agent model
in which lump-sum taxation is allowed: since there is no need to redistribute, the government can
rely only on non-distortionary taxes to finance its expenditures. The second case corresponds to the
situation in which the market allocation happens to be the one preferred by the planner: although there
might be inequalities due to differences in productivity and asset holdings, they are consistent with the
relative weight the planner gives to each type of individual. The third situation encompasses the two
previous ones, but also includes situations in which the planner would want to redistribute but faces
a targeting problem, i.e. it cannot reach a better allocation than the market one using anonymous
linear instruments due to the absence of correlation between the source of inequalities and its relative
preference over agents’ types.

Marginal implementation cost Using our specification, we can also further examine the determi-
nants of the marginal implementation cost that enters the pollution tax formula. First, using the first
order condition of the Ramsey problem with respect to market weights, we can express the multipliers
of the implementability constraints as

θi =
∑
j

πjλj

φj
− λi

φi
, ∀i,

which means that the cost of implementing the planner’s preferred allocation is positive (i.e. −θi is
positive) for households who are valued relatively less by the market than by the planner as compared
to an average household. Second, we can now write

−
∑
i

πiθiMICi,t = (σ − 1)
cov(θi, ICi,t)

ct
, (24)

from which we see that the marginal implementation cost is always null if σ = 1, where σ is the inverse
of the IES. As shown in Appendix A.4.3, when more resources are available for agents’ consumption, not
only their consumption and real wage go up, but the price also goes down. When σ = 1, the price decline
exactly offsets the increase in volume: expenditures and labor income remain unchanged, so that the
planner has no need to adjust its transfer to ensure that the implementability constraints are satisfied.
When σ > 1, the price effect dominates, so that an increase in aggregate consumption reduces the
total amount of transfers needed to satisfy agents’ implementability constraints. In periods when poor
households (low θi) consume relatively more compared to what they earn (high ICi,t), the aggregate
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implementation cost is positive and a reduction in transfers reduces the costs. Conversely, if the volume
effect dominates (σ < 1), or if rich households temporarily consume relatively more compared to what
they earn (low cov(θi, ICi,t)), an increase in aggregate consumption increases implementation costs.

As shown in Appendix A.4.3, our utility function implies that individuals’ consumption is a constant
fraction of aggregate consumption, but individuals’ labor supply is not proportional to aggregate labor,
hence we cannot write ICi,t as in (22). In particular, when transfers are positive (as they are in
our quantitative analysis) less productive households work relatively less when aggregate labor supply
is high, i.e., for i, j such that ei > ej , hi,t/hj,t is increasing in ht. Under the assumption that higher
productivity types also have a lower marginal utility of consumption, and thus a higher θi, the covariance
term in equation (24) is positive (resp. negative) when the aggregate labor supply is relatively low
(resp. high), and the marginal implementation cost is positive (resp. negative) if and only if increasing
aggregate consumption decreases the amount of transfers necessary to satisfy agents’ implementability
conditions (σ > 1).

Marginal utility of consumption Under our functional form assumption, we can also sign the
effect of inequalities on the marginal utility of consumption (Vc,t) as a function of the value of σ, which
captures the utility curvature. In particular, when σ = 1, the increase in agents’ average marginal
utility exactly offsets the fact that higher marginal utility agents receive a lower share of aggregate
consumption increases, hence an aggregate increase in consumption is valued identically in the first and
second-best. When the utility is more (resp. less) concave, consumption is valued more (resp. less)
to the extent that there are more inequalities, shifting the second-best pollution tax downward (resp.
upward) compared to the first-best where individualized transfers are used to reduce consumption
inequalities (see Appendix A.4.3).

4 Calibration

In this section, we explain how we calibrate the model to explore quantitatively the implications of
heterogeneity in productivity for the optimal taxation of carbon, capital income, and labor income.
As in Barrage (2019), we consider a climate-economy model based on Nordhaus’ DICE model. While
Barrage (2019) considers a planner setting taxes for the global economy, we adopt a slightly different
approach: we consider a global economy with the economic features of the U.S. economy, i.e. we
parametrize the income per capita, the productivity distribution, and the fiscal system to match U.S.
data, but we scale our economy so that output and emissions match global data. The objective is to
determine how an economy with important inequalities and responsible for a significant share of global
emissions like the U.S. should design its fiscal system if it were to internalize the global impact of its
emissions, assuming that the rest of the world would behave identically.
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4.1 Climate model

The calibration of the climate model is based on the 2016 version of DICE, presented for example
in Nordhaus (2017). The initial period is 2015, and each period lasts 5 years. The climate model is
composed of three sets of equations describing the carbon cycle, radiative forcing, and climate change.

Carbon cycle The carbon cycle is represented by three reservoirs. SAt, SUp, and SLo represent the
level of carbon concentration in the atmosphere, the upper oceans and biosphere, and the deep oceans
respectively. These stocks evolve according to the following laws of motion:

Sj
t = b0,j(E

M
t + Eland

t ) +

3∑
i=1

bi,jS
i
t−1,

where the three reservoirs j are ranked as above and with Eland
t the exogenous land emissions. The

coefficient b0,j is 1 for the first reservoir (SAt) and 0 for the others: industrial and land emissions
directly flow into the atmosphere, and later affect the other two reservoirs through the communication
between the carbon stocks captured by the parameters bi,j .

Radiative forcing The accumulation of carbon in the atmosphere increases radiative forcing, i.e.
the net radiation received by the earth. This mechanism is captured by the following equation

Ft = κ
(
ln(SAt

t /SAT
1750)/ln(2)

)
+ Fex

t .

where Fex
t is exogenous forcing. A positive radiative forcing means that the earth receives more energy

from the sun than it emits back to space, hence the climate warms.

Climate change The change in temperature is modeled through two equations for the mean tem-
perature of the atmosphere (ZAt

t ) and deep oceans (ZLo
t ) that interact as follows

ZAt
t = ZAt

t−1 + ζ1
(
Ft − ζ2Z

At
t−1 − ζ3(Z

At
t−1 − ZLo

t−1)
)
,

ZLo
t = ZLo

t−1 + ζ4(Z
At
t−1 − ZLo

t−1).

All the parameters of the climate model are taken from DICE 2016, and reported in Table IV in the
appendix.

4.2 Damages

We also model production damages as in DICE 2016, with

D(Zt) = a1Z
At
t + a2(Z

At
t )a3 . (25)

As in DICE, we assume that D(Z) is a simple quadratic function with a1 = 0 and a3 = 2. Since DICE
does not distinguish between production and utility damages, we follow Barrage (2019) to decompose
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the damages from DICE into a production and a utility component. We apply her decomposition and
assign 74% of damages at 2.5°C warming to output, and 26% to utility. This provides an adjusted
value for the parameter a2 in equation (25), and enables us to determine the preference parameter α0.

To examine the robustness of our quantitative results to the level of damages, we also consider an
alternative “high damage” specification. Instead of assuming quadratic damages, we consider a cubic
function (a1 = 0, a3 = 3) and we adjust the coefficient a2 such that damages are identical to the
baseline scenario at current warming. This high damages scenario therefore assumes that the damage
function in DICE correctly captures current damages, but mis-estimates damages at higher levels of
warming because of the high uncertainties surrounding the impacts of climate change at these higher
temperatures (see e.g., Weitzman, 2009; Pindyck, 2013).

4.3 Households

Using specification (23) and market weights, the inter-temporal aggregate utility is

∑
t

βtNtU (ct, ht, Zt, φ) =
∑
t

βtNt

(
(ct(1− ςht)

γ)1−σ

1− σ
+ Γ

(
1 + α0Z

2
t

)−(1−σ)

1− σ

)
,

with Γ ≡
∑

i πiφi and where Zt ≡ ZAt
t is the atmospheric temperature. To ensure that aggregate

emissions remain consistent with DICE, we calibrate the growth rate of population accordingly. Because
we also want to match the GDP per capita of the U.S., we set the population levels as U.S. population
multiplied by the ratio of world to U.S. GDP in 2011-2015, the first period of the model.

Following DICE, we calibrate the utility discount factor to β = 1/(1 + 0.015) per year, and the
inverse of the IES to σ = 1.45. The parameters γ and ς are set in order to match a Frisch elasticity of
labor supply of 0.75 (see Chetty et al., 2011) and an average per capita labor supply of h2015 = 0.277

in the initial period (computed from the Survey of Consumer Finances, see Appendix D.2).

We calibrate the ability distribution on the basis of hourly wage data that we obtain from the Survey
of Consumer Finances (SCF). To be consistent with the initial period in DICE, we use the SCF 2013.
We divide the sample of working households into ten groups of hourly wage deciles (i.e., I = 10, and
for all i, πi = 0.1), with an hourly wage of $6.44 for the bottom productivity group and $101.35 for the
top productivity group, and normalize productivity levels such that

∑
i πiei = 1. The full procedure is

described in Appendix D.1.

4.4 Production

We model production using a Cobb-Douglas technology for both sectors. We have

F (K1,t,H1,t, Et) = Kα
1,tH

1−α−ν
1,t Eν

t

with α = 0.3, and ν = 0.04 (from Golosov et al., 2014), and

G(K2,t,H2,t) = K1−αE
2,t HαE

2,t .
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with αE = 0.403 (from Barrage, 2019). The initial total factor productivities A1,2015 and A2,2015 are set
such that output in sectors one and two match world GDP (2011-2015 average from the World Bank)
and aggregate industrial emissions (from DICE 2016) respectively, and their growth rate are taken from
DICE 2016.12 Our abatement cost function is also taken from DICE, with the following specification

Θ(µt, Et) = c1,tµ
c2
t Et,

where c1,tc2 = P backstop
t represents the backstop price, i.e. the price at which it becomes economical

to abate 100% of emissions. As in DICE 2016, we assume that this price is $550/tCO2 in the initial
period, and declines at a rate of 0.5% per year. We also calibrate the exponent c2 = 2.6 as in DICE.

4.5 Government

We calibrate the fiscal part of the model to match data on U.S. fiscal policy. Here we deviate from
Barrage (2019) who sets tax rates, government spending, and debt to match their empirical counterparts
at the global level. The reason for targeting the U.S. rather than the global economy is that the degree
of inequality is calibrated to match the U.S. income and wealth distribution and, more importantly,
in our framework and in reality fiscal policy is typically decided on at the national level. To make
the model consistent with the (global) evolution of the climate, we subsequently scale up the economy
such that GDP and total emissions are consistent with their global levels. By doing so, rather than
ignoring negative effects from emissions on other countries, we assume that U.S. fiscal policy is set to
fully internalize the negative global effects from their carbon emissions.

To calibrate fiscal policy, we first require the empirical counterparts of taxes. In the model, there
are four taxes: a tax τK,t on capital income, a tax τH,t on labor income, an excise (intermediate-goods)
tax τI,t on total energy and a tax τE,t on pollution emissions. We set the tax rates on capital and
labor income in line with Trabandt and Uhlig (2012), who conduct a detailed analysis of fiscal policies
in the U.S. and a number of European countries. Using a comprehensive measure of taxes on capital
income, they find that on average, capital income in the U.S. is taxed at a rate of 41,4%, hence we set
a time-invariant τK = 0.411 in our baseline.13 They find that labor income in turn, is taxed at a rate
of 22.1%. Combined with a tax rate on consumption of 4.6%, this translates into a consumption-labor
wedge of 25.5%, or τH = 1 − (1 − 0.221)/(1 + 0.046) = 0.255. Turning to energy taxes, we follow
Barrage (2019) and set the intermediate-goods tax at τI = 0. Regarding the tax on pollution emissions
τE , we set it at a level so that, in our calibrated economy, 3% of total energy is obtained from clean
technologies (Nordhaus, 2017). This requires τE = 2.01$/tCO2 in 2015.

To calibrate initial, outstanding debt B0 at the start of the economy, we calculate the difference
12To calibrate the initial values of K1,0 and K2,0, we assume that the economy is in a balanced growth path in which

temperature remains constant at the current level.
13Specifically, to obtain a comprehensive measure of capital tax rates, Trabandt and Uhlig (2012) adjust the personal

income tax rate to account for income, profit and capital gains taxes of corporations, taxes on financial and capital
transactions and recurrent taxes on immovable property. Similarly, to calculate labor income taxes, personal income taxes
are adjusted to account for payroll taxes and social security contributions.
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between total liabilities and financial assets from the U.S. government’s balance sheet, both as a per-
centage of GDP.14 Following Barrage (2019) and in order to facilitate reproducing results for other
countries, these data are obtained from the IMF Government Finance Statistics. This gives an average
debt-to-GDP ratio of approximately 111% over the period 2011–2015. Because in our model a period
corresponds to five years, we set B0/Y1,0 = 1.11/5 = 0.222, or 22.2%.

Lastly, we require an empirical counterpart of government spending. In our model, Gt denotes
government consumption of the final good, while T captures the present value of all lump-sum transfers
households receive from the government. To better align the model with the data and to analyze
business-as-usual scenarios, we follow Barrage (2019) and split up total government spending into final
good spending GC

t and exogenous transfers GT
t that are provided to households. The total transfers

households receive thus consist of this exogenous component GT
t and the endogenous component T .15

To obtain the empirical counterparts of GC
t and GT

t , we proceed as in Barrage (2019) and collect data
on U.S. government expenses from the IMF Government Finance Statistics. Averaging over the years
2011–2015, government consumption is GC

0 /Y1,0 = 0.158, or 15.8%, while government transfers are
GT

0 /Y1,0 = 0, 145, or 14.5%.16 To keep the sizes comparable to GDP going forward, both government
consumption and exogenous transfers grow at the sum of technological progress and population growth.

5 Quantitative results

We now present the optimal policy obtained under a utilitarian welfare criterion (i.e., λi = 1 for all
i), and the associated welfare effects compared to a “climate skeptic” planner scenario in which the
planner ignores the anthropogenic origin of climate change and consequently sets the carbon tax to
zero.

5.1 Optimal policy

Optimal tax paths Figure 1 shows the path of optimal taxes on capital and labor income in our
baseline scenario. The labor income tax roughly doubles in the first period, from 25% to about 50%, and
stabilizes at this level. Rebating the revenue from these taxes via lump-sum transfers achieves most of
the redistribution implied by the optimal tax system. Because lump-sum taxes are available and there is
no initial wealth inequality, the only reason to tax capital income is to mitigate intertemporal distortions
associated with labor income taxation. Since optimal labor income taxes are close to constant, the

14The numbers are calculated at the “General Government” level.
15The endogenous component is set to T = 0 in Barrage (2019) and many other Ramsey tax models. The reason is that

without heterogeneity, optimal policy would be to finance all spending through lump-sum taxes (i.e., negative transfers),
in which case tax distortions become irrelevant. In our model with heterogeneity, we do not have to impose this restriction.

16As in Barrage (2019), we include the following categories from the expense breakdown in GC
t : compensation of

employees, use of goods and services, subsidies, grants and other expense. For transfers GT
t , we include social benefits.
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optimal capital income tax converges to zero quickly after the second period.17 The next section
examines scenarios with further constraints on policy instruments leading to deviations from this result.

Figure 2 shows the optimal path of carbon taxes: in the baseline scenario, the tax starts at
21.5$/tCO2 in 2020 and goes up to reach 227.3$/tCO2 a century later. These tax levels are con-
sistent with the ones found in Barrage (2019) and Nordhaus (2017, 2018), but are too low to contain
climate change to a level consistent with the +2°C objective of the Paris agreement. In our “high
damages” scenario, the optimal income taxes remain almost the same, but the carbon tax is roughly
three times as large (see Appendix E.1).
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Figure 1: Optimal Income Taxes.

Carbon tax decomposition Figure 3 compares the second-best pollution tax normalized to 1 (black
line) to what it would be if the MCF was 1 in all periods (red line)—which also corresponds to the
Pigouvian tax evaluated at the second-best allocation—and to what it would be ignoring inequalities
(blue line). The MCF appears to play an insignificant role: the social cost of carbon is only 0.5% above
the second-best carbon tax in the initial period, a difference that becomes even smaller in subsequent
periods. Thus, even in the presence of distortionary taxation, it is optimal to set the carbon tax
“almost” at the social cost of carbon (i.e. at the Pigouvian level). However, the discrepancy between
the blue and red lines indicates that the social cost of carbon itself is significantly affected by the
presence of inequalities. The reason is that the social cost of carbon represents the monetary value
of climate damages, and is determined by the arbitrage between reducing damages and increasing
aggregate consumption. As explained in Section 3, a marginal unit of aggregate consumption is valued
more in the presence of inequalities if the marginal utility is sufficiently declining in consumption.
Intuitively, an increase in aggregate consumption is valued less to the extent that it disproportionately
goes in the hand of richer households, but it is valued more to the extent that the average marginal

17Notice that, because we have lump-sum taxation, the reason for zero long-run capital income taxation is different
from the usual Chamley (1986) and Judd (1985), and is not subject to the criticism in Straub and Werning (2020).
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Figure 2: Optimal Carbon Taxes ($/tCO2).

utility becomes higher if some people have relatively low consumption levels. In particular, with our
specification, consumption inequalities call for lower carbon taxes for σ > 1. With σ = 1.45, we see
that ignoring consumption inequalities would lead to a social cost of carbon higher by on average 4.2%
over the next century. As shown in Appendix E.1, these results do not strongly depend on the damage
specification: although the social cost of carbon is about three times higher in our “high damages”
scenario, the role of the MCF remains negligible and the effect of inequalities is similar, although
slightly smaller (3.3% instead of 4.2% in the baseline).
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Figure 3: Carbon Tax Decomposition.
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Fiscal adjustments relative to a climate skeptic planner Table I below reports the adjustments
made to the government budget between our baseline second-best scenario and a “climate skeptic”
planner scenario in which the planner ignores the anthropogenic origin of climate change. Specifically,
this climate skeptic planner sets all taxes optimally but behave as if the climate variable was exogenous
and not driven by human-made emissions. The objective of this experiment is to see how the planner
should adjust the fiscal system once it acknowledges the necessity to address climate change. As shown
in the table, the present value of the optimal carbon tax revenue represents 1% of the present value
of GDP in our baseline calibration. This additional resource is split about equally between reducing
distortionary taxes, with the present value of the labor tax decreasing by 0.6% of GDP, and increasing
transfers, whose present value increases by 0.5% of GDP.18 This finding qualifies the weak double-
dividend hypothesis (for a review, see Goulder, 1995) according to which it is optimal to use the
proceeds of the carbon tax to reduce distortionary taxes. With heterogeneous agents, distortionary
taxes serve a redistributive purpose, hence it is not desirable to reduce them unless additional transfers
can be provided through another mean. This result also gives some grounds to the popular carbon tax
and dividend policy (see Economists Statement on Carbon Dividends, 2019) that calls for redistributing
the proceeds of the tax lump-sum to address redistributive concerns, although we find that only half
of the tax revenue should serve that purpose, the rest being aimed at improving economic efficiency.

Table I: Government Budget Adjustment.

Revenue Source Revenue Use

Labor Capital Carbon Gov. Cons. Transfer Interest

No Carbon Tax 33.5% 0.6% 0.0% 17.2% 14.6% 2.3%

Optimal Carbon Tax 32.9% 0.6% 1.0% 17.1% 15.1% 2.3%

Change −0.6% 0.0% 1.0% −0.1% 0.5% 0.0%

Note: Numbers represent the present value of each component of the government budget constraint divided
by the present value of GDP.

5.2 Welfare effects

Figure 4 displays the percentage increase in consumption that would be necessary in the climate skeptic
scenario to make households as well-off as in the optimal scenario in each period and for each produc-

18Fried et al. (2021) conduct a different experiment but find similar results. Starting from exogenous tax rates, they
model a continuum of potential budget-neutral recycling mechanisms after introducing an exogenous carbon tax and
quantitatively determine the one maximizing aggregate welfare. They find that the strategy maximizing welfare gains
involves spending about two thirds of the revenue to reduce the capital-income tax and one third to increase the labor-
income tax progressivity, an option that dominates the use of transfers in their non-linear tax system. They also show
that this result is relatively stable when changing the initial tax rates.
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tivity group. While the average long run gains are positive for all productivity groups (the average
discounted gain is 4.1% with baseline damages), the period welfare gains are heterogeneous over time
and between groups. While the increase in the lump-sum transfer initially benefits poor households
relatively more, in the long-run the decrease in the labor income tax benefits rich households relatively
more. Overall, welfare gains are progressive but mostly negative in the 21st century and positive but
regressive after 2100.19 The reason why the optimal carbon tax is progressive initially is that the rev-
enue gains from carbon taxation are rebated through both a higher lump-sum transfer and a reduction
in the labor income tax rate: see Table I. This contributes to an increase in the progressivity of the
overall tax system, which makes poorer households benefit more (or suffer less) from the initial increase
in carbon taxes. In the long run, richer households are the ones who benefit more from carbon taxation.
A significant share of the welfare gains from a lower temperature come from reduced utility damages.
Richer households care relatively more about those damages in the sense that they are willing to give
up more units of consumption for a reduction in temperature. This explains why in the long run, the
welfare gains from carbon taxation are regressive when expressed in consumption units.
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Figure 4: Period Welfare Gains (%).

These results highlight the political economy challenges associated carbon taxation. Although the
policy is clearly welfare improving in the long run, the present costs outweigh the present benefits,
making the implementation of carbon tax policies politically difficult.20 Still, accounting for the dis-
tributional effects of carbon pricing and designing optimal policies accordingly, we see that the initial

19As shown in Dietz et al. (2021), the DICE model features too much thermal inertia, i.e., the temperature response to
an impulse in emissions is delayed too much compared to what climate science models predict. If this response was more
immediate, welfare gains from carbon taxation could become positive earlier.

20Kotlikoff et al. (2021) study this question in an OLG model linked to DICE. They abstract from fiscal policies, and show
that the carbon tax delivering the highest uniform welfare gains across generations implies significant inter-generational
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welfare impacts are progressive and even positive for households at the bottom of the income distribu-
tion in the first period. This distribution of welfare gains could make the policy more attractive to a
government concerned with redistribution, and increase public support in the first stages of the policy
implementation.

6 Extensions

6.1 Third-best policies

We have considered a Ramsey problem in which the government faces two key constraints: only linear
and anonymous instruments can be used. Still, this set of fiscal instruments confers a lot of power to the
government, arguably more than what most governments have. When introducing a carbon tax policy,
a government may not have complete freedom to adjust labor or capital income taxes. In particular,
the full expropriation of asset holdings in the initial period that is optimal in our benchmark is not
a realistic policy option. To explore these issues, we now turn to fiscal environments with additional
constraints on the set of available instruments.

6.1.1 Third-best tax formulas

Exogenous labor income tax Let us assume that the planner cannot choose the labor income tax,
that is exogenously fixed at a level τ̄H in all periods t ≥ 0. The planner now faces additional constraints:
in every period t ≥ 0, it must ensure that

Uh,t

Uc,t
= − (1− τ̄H) (1−Dt)A1,tFH,t, (26)

which pins down the wedge between the marginal rate of substitution between consumption and leisure
and the marginal product of labor. For a given value of τ̄H , equation (26) puts a restriction on
the implementable allocations that the planner must satisfy. Let βtΛH

t denote the multiplier on the
constraint (26). The latter is proportional to the welfare impact of raising the exogenous τ̄H in a
particular period. The multiplier ΛH

t will be positive (resp. negative) on average if the labor income
tax is fixed at a sub-optimally high (resp. low) level. With the additional constraint (26) in each period
t, the expression for the optimal pollution tax becomes21

τE,t =
1

ν1,t

∞∑
j=0

βj

(
ν1,t+jD

′
t+jA1,t+jFt+j −Nt+jVZ,t+j + ΛH

t+j (1− τ̄H)D′
t+jA1,t+jFH,t+j

)
JEM

t ,t+j .

transfers.
21Without constraint (26), it is optimal to equalize the marginal rate of technical substitution between capital and labor

across both sectors: the government does not wish to distort production decisions. In the third best, with constraint (26),
this is no longer the case, and it is optimal to deviate from zero excise energy taxes, τI,t. See Appendix ?? for more
details.
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where ν1,t is the multiplier on the aggregate resource constraint in period t, which measures the scarcity
of consumption goods and hence, the opportunity costs of reducing emissions.22 Compared to equa-
tion (19), the main modification is the final component, which Barrage (2019) refers to as the fiscal
interaction term. It reflects another reason for deviating from the Pigouvian tax rule. By reducing
production damages, a higher pollution tax τE,t raises the marginal product of labor and hence, the
before-tax wage. If τH is fixed at a sub-optimally low level, a further increase in the before-tax wage
is welfare-reducing. The pollution tax then amplifies the costs of having a tax on labor income that is
below the welfare-maximizing level. Consequently, the optimal pollution tax is reduced. The fiscal in-
teraction term thus calls for a lower pollution tax when the labor income tax is fixed at a sub-optimally
low level and vice versa if the labor income tax is fixed at a sub-optimally high level.

Exogenous capital income tax Let us now assume that the planner cannot choose the capital
income tax, that is exogenously fixed at a level τ̄K in all periods t ≥ 0. The new constraints faced by
the planner are such that in every period t ≥ 0

Uc,t

Uc,t+1
= β (1 + (1− τ̄K) ((1−Dt+1)A1,t+1FK,t+1 − δ)) , (27)

which links the marginal rate of substitution between consumption in periods t and t+ 1 (on the left-
hand side) to the after-tax interest rate (on the right-hand side). As with an exogenous labor income
tax, equation (27) restricts the set of implementable allocations for a given value of τ̄K . Let βtΛK

t+1 be
the multiplier on this constraint in period t. The multiplier is positive (negative) if the capital income
tax rate is fixed at a sub-optimally high (low) level, so that raising τ̄K in a particular period lowers
welfare. With the additional constraint (27), the expression for the optimal pollution tax is modified
to:

τE,t =
1

ν1,t

∞∑
j=0

βj

(
ν1,t+jD

′
t+jA1,t+jFt+j −Nt+jWZ,t+j + ΛK

t+j (1− τ̄K)D′
t+jA1,t+jFK,t+j

)
JEM

t ,t+j ,

where again the last component captures the fiscal interaction term, as in Barrage (2019). The intuition
is similar as before. A higher pollution tax raises the marginal product of capital by lowering production
damages. The latter is beneficial if the capital income tax is fixed at a sub-optimally high level. A
higher pollution tax then alleviates the savings distortion by raising the before-tax interest rate. If, by
contrast, the capital income tax is fixed at a level below the one that maximizes welfare, a pollution
tax amplifies the savings distortion and the fiscal interaction term reduces the optimal pollution tax.

6.1.2 Quantitative analysis

Figures 10, 11, and 12 in the appendix show the optimal path of income and carbon taxes in the
previous third-best scenarios. Figure 5 below compares the third-best pollution tax normalized to 1

22Formally, the multiplier ν1,t measures the welfare impact of decreasing government consumption Gt. In an environ-
ment without heterogeneity and distortionary taxes, the latter is equal to the representative agent’s marginal utility of
consumption.
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(black line) with what it would be ignoring the new fiscal interaction term (green line), ignoring the
MCF (red line), and ignoring inequalities (blue line). As in our benchmark scenario, the MCF plays an
insignificant role but inequalities push the carbon tax downward. The effect of inequalities is slightly
larger when the labor income tax is fixed: ignoring inequalities would increase the tax by around 6% in
this scenario instead of 4% in the second-best and in the scenario where the capital tax is fixed. Indeed,
since τ̄H is set to 25.5%, i.e. below the second-best tax rate, there are more consumption inequalities
than in the second-best and the opportunity cost of emission abatement is higher.
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Figure 5: Third-Best Carbon Tax Decomposition.

While the MCF still plays a negligible role, fiscal interactions now drive the carbon tax away
from its Pigouvian level through the additional constraints that arise in the third-best environment.
Interestingly, the fiscal interaction term lowers the optimal carbon tax when the labor income tax is
fixed, whereas it raises the optimal carbon tax when the capital income tax is fixed. Recall that a carbon
tax, by reducing production damages, increases both the marginal product of labor and the marginal
product of capital and hence, the before-tax wage and interest rate. A higher before-tax wage, in turn,
lowers welfare because the labor income tax is set at a sub-optimally low level (i.e., τ̄H = 25.5% instead
of around 49% at the optimum), whereas a higher before-tax interest rate raises welfare because the
capital income tax is set at a sub-optimally high level (i.e., τ̄K = 41.1% instead of virtually 0% at the
optimum). A higher carbon tax thus alleviates the savings distortion, whereas it amplifies the costs of
taxing labor income at a sub-optimally low level. This explains why quantitatively we find that the
fiscal interaction term is positive (negative) when the capital (labor) income tax is fixed.

Appendix E.2 also provides the government budget adjustments and welfare gains in these third-best
policy scenarios. These results suggest that the general pattern of the distribution of welfare gains from
carbon taxation does not strongly depend on the fiscal policies currently in place, but the optimal use
of the carbon tax revenue does. While this revenue is split about equally between increasing transfers
and reducing the labor income tax in our baseline scenario, with additional constraints on instruments
this is not the case anymore. In particular, when the government is forced to redistribute “too much”
because the capital tax is set above the optimum, the carbon tax revenue is mostly targeted towards
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reducing tax distortions. By contrast, when the government is forced to redistribute “too little” because
the labor income tax is set below the optimum, the revenue is instead targeted towards redistribution.
In the latter case, introducing carbon taxation has a smaller negative impact on current generations,
more progressive effects, and the least productive households experience welfare gains in all periods.

6.2 Initial wealth inequality

In this section, we consider the effect of initial wealth inequality on the optimal tax system. We first
discuss its implications for the time-consistency of Ramsey policies, then discuss the optimal rules and
investigate the quantitative effects given the levels of wealth inequality observed in the U.S.

6.2.1 Time-inconsistency

The tax rules we have described above apply unchanged for every period including period 0. This is the
result of two features of the model considered so far. The first is the ability of the Ramsey planner to
choose lump-sum transfers (or taxes), and the second is the assumption that there is no initial wealth
inequality. To see this, notice that the planner’s problem, see equation (17), is symmetric with respect
to time except for the the last term in the objective function of the Ramsey planner, which we denote
here by W0,

W0 = N0Uc,0

∑
i

πiθi (R0ai,0 + T ) .

As argued above, the optimality condition associated with the choice of T implies that
∑

i πiθi = 0.
Thus, if ai,0 = a0 for every i, it follows that W0 = 0 and that the tax rules are time invariant.

This does not mean that the tax rules are time-consistent: if the Ramsey planner was allowed
to reoptimize in a future period, they would want to deviate from the choices made by the planner
in period 0. The reason for the time-inconsistency is, however, different from the one in the usual
representative-agent version of the Ramsey problem in which the planner cannot choose lump-sum
transfers. In that case, in general

∑
i πiθi ̸= 0, and W0 ̸= 0 regardless of initial wealth inequality, which

leads to the usual reason for time-inconsistent Ramsey policies; initial capital income taxes mimic the
unavailable and undistortive lump-sum taxes. In our setup, the reason for time inconsistency has to do
instead with the use of capital income taxes to redistribute unequal asset income.

There is a sense in which the time-inconsistency problem in our setup is less severe than in the
usual representative-agent case. If there is no initial wealth inequality, and the optimal Ramsey policy
was such that the economy was in a balanced growth path starting from period 0, then there would
still be no wealth inequality in every future period and the Ramsey policy would be time-consistent.
In any case, in this section we address how the Ramsey policy changes in the presence of initial wealth
inequality.
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6.2.2 Optimal tax rules

Before characterizing the optimal pollution tax in this constrained environment, it is worth mentioning
that without initial wealth inequality, the fact that we do not allow the planner to choose capital
taxes in period 0, τK,0, is immaterial. The planner is indifferent with respect to this choice (i.e.,
∂W0/∂τK,0 = 0), because a tax on capital income in period 0 is equivalent to a reduction in lump-sum
transfers T if there is no initial wealth inequality. With initial wealth inequality, this is no longer the
case. In fact, if the planner could choose τK,0, it would typically be optimal to expropriate all initial
wealth, which by construction eliminates all initial wealth inequality as well. So, if wealth inequality
is to have any effect on the tax rules, τK,0 must be restricted.23 In the quantitative results presented
below we fix τK,0 to be at the same level as in the current tax system.

For t ≥ 1, the optimal tax rules are not affected by the presence of initial wealth inequality.24

However, if there is initial wealth inequality and τK,0 cannot be chosen to eliminate these differences,
there is another reason for deviating from Pigouvian taxation in period 0. Specifically, the optimal
carbon tax satisfies (see Appendix B):

τE,0 =
1

ν1,0

∞∑
j=0

βj
(
ν1,jD

′
jA1,jFj −NjWZ,j

)
JEM

0 ,j −N0
Uc,0

ν1,0
∆(1− τK,0)D

′
0A1,0FK,0JEM

0 ,0.

Compared to equation (19), the final term is new and is proportional to

∆ ≡
∑
i

πiθiai,0,

which captures the costs of initial wealth inequality. If initial assets and productivity are positively
correlated, the costs of initial wealth inequality is typically positive as well: ∆ > 0.25 These costs
are amplified by a pollution tax because the latter, through a reduction in production damages, raises
the marginal product of capital. An equivalent interpretation is that, by not allowing the planner to
expropriate all wealth, the tax on capital income τK,0 is set at a sub-optimally low level. It is then
optimal to set a lower pollution tax in period 0, because additional production damages contribute to a
reduction in the return to capital. This explains why ceteris paribus, the optimal pollution tax is lower
than would be the case without initial wealth inequality.

6.2.3 Quantitative analysis of the effect of wealth inequality

We calibrate the joint distribution of productivity and initial wealth from the SCF. We divide households
into 10 productivity groups, and 10 wealth groups within each productivity group, for a total of 100
different types of equal size. The full procedure is described in Appendix D.1.

23In this case, abstracting from consumption taxes is not inconsequential, as consumption taxes can be combined with
appropriate labor income taxes to mimic wealth taxes (see Werning, 2007).

24The exception is the tax rule for τK,1. See Appendix B for details.
25As explained before, the multiplier θi on the implementability constraint is zero on average and positive (negative)

for individuals with high (low) productivity, as raising the lump-sum transfer for a rich (poor) agent would typically
contribute to a reduction (increase) in welfare.
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Figures 15 and 16 in the appendix show the optimal path of income and carbon taxes with initial
wealth heterogeneity when the initial capital tax is fixed at its current level. Figure 17 provides a
decomposition similar to the one shown in Figure 3 above. Table VIII shows the government budget
adjustments made relative to the climate skeptic planner. Figure 18 displays the distribution of the
lifetime welfare gains for each of the 100 groups. These gains are U-shaped with respect to income, but
strictly increasing with initial wealth.

6.3 Additional sources of heterogeneity

6.3.1 Optimal tax rules

Model Our benchmark model considers heterogeneous agents who differ in productivity and initial
asset holdings. To further explore the role of agents heterogeneity on optimal fiscal policy, we now
introduce two additional ingredients to our benchmark model: a second consumption good, and het-
erogeneous preferences. We assume that a household of type i derives utility from the consumption
of a final good ci,t, labor supply hi,t, environmental degradation Zt, and the consumption of a “dirty”
good di,t according to a utility function

∞∑
t=0

βtui (ci,t, di,t, hi,t, Zt) ,

where the second dirty good d is produced from a linear technology that uses energy as its only input.
To further simplify notations, we assume that energy produced in the energy sector (Et) is now used
in the final good sector or directly consumed by households, such that

Et = E1,t +Ntdt,

with E1,t the quantity of energy used as an input in the final good sector and dt =
∑

i πidi,t the
households’ average per period energy consumption. In order to match empirically observed budget
shares for energy (or alternatively, polluting goods) for different income groups, we assume households
utility can be represented by the following period utility function

ui (ci, di, hi, Z) =

(
ci(di − d̄i)

ϵ(1− ςhi)
γ
)1−σ

1− σ
+ χi

(
1 + α0Z

2
)−(1−σ)

1− σ
.

Thus, in line with previous studies in this literature (e.g. Fried et al., 2018; Klenert et al., 2018; Aubert
and Chiroleu-Assouline, 2019; Jacobs and van der Ploeg, 2019) preferences for consumption are modeled
with a Stone-Geary utility function, so that an agent of type i experiences positive utility from energy
consumption only after consuming its first d̄i units of energy. d̄i therefore denotes the subsistence
consumption level of energy for an agent of type i, which we allow to be type (and time) specific.
This specification allows us to consider households with non-homothetic preferences to better capture
the heterogeneous impact of pollution taxes on households’ budgets. Assuming type-specific values for
d̄i, this specification also allows us to consider non-linear aggregate Engel curves as well as horizontal

31



heterogeneity.26,27 In addition, we assume that agents’ relative sensitivity to the environmental variable
Z is also type specific and denoted χi, normalized such that

∑
i πiχi = 1.

Because there is an additional consumption good, the planner uses an additional instrument: it
levies an excise tax τD,t on households’ consumption of energy. The budget constraint of agents of type
i can thus be expressed as

∞∑
t=0

ptNt

(
ci,t + di,t(pE,t + τD,t)− (1− τH,t)wteihi,t

)
≤ R0N0a0 + T. (28)

To focus on the additional sources of heterogeneity, we assume here that there is no initial wealth
inequality, so that ai,0 = a0 for all i.

Solution method We apply the same solution method as in our benchmark model. Using the
method of Werning (2007), we can express individual allocations as a function of aggregate variables
and market weights. These expressions allow us to write the aggregate utility function U(ct, dt, ht, Zt, φ)

and individual implementability conditions necessary to solve the Ramsey problem based on aggregate
variables and market weights only.

Optimal taxes As shown in Appendix C.4, the second-best labor income tax in this extended frame-
work is

τH,t =
Ψς(1− ςht)

−1

Φ+Ψ
ς
(
1−γ(1−σ)

)
(1−ςht)

− Λt
ϵ(σ−1)

(dt−d̄t)

,

the capital income can be obtained from

Rt+1

R∗
t+1

=
Φ+Ψ ςγ(σ−1)

(1−ςht+1)
− Λt+1

ϵ(σ−1)

(dt+1−d̄t+1)

Φ+Ψ ςγ(σ−1)
(1−ςht)

− Λt
ϵ(σ−1)

(dt−d̄t)

,

the excise tax on energy remains unchanged at τI,t = 0, and the households energy consumption excise
tax is

τD,t =
Λtϵct

Φ+ Ψςγ(σ−1)
(1−ςHt)

− Λtϵ(σ−1)
(Dt−D̄t)

,

with

Φ =
∑
j

πj
λj

φj
+
(
1− (1 + ϵ+ γ)(1− σ)

)
cov(λi/φi, ωi),

Ψ = −cov(λi/φi, ei)

ς
,

Λt = −cov(λi/φi, d̄i,t).

26With Stone-Geary preferences, agents’ Engel curves are linear. When preferences are heterogeneous, the aggregate
distribution of expenditures may however be a non-linear function of income.

27Horizontal heterogeneity arises when individuals with the same income do not consume goods in the same proportions.
Recent studies have shown the importance of horizontal heterogeneity on the distributional impacts of energy taxes (Cronin
et al., 2019; Pizer and Sexton, 2019), and their implications for the design of tax reforms (Sallee, 2019).
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Turning to the pollution tax, we obtain the same general formula as in our benchmark model

τE,t =
∞∑
j=0

βj

(
Vc,t+j +

∑
i πiθiMICi,t+j

Vc,t +
∑

i πiθiMICi,t
D′

t+jA1,t+jFt+j −
Nt+jVZ,t+j

Vc,t +
∑

i πiθiMICi,t

)
JEM

t ,t+j .

Comparison with the benchmark model Besides the differences in the path of allocations, the
key differences with our benchmark lie in the expressions of the marginal implementation cost and the
marginal utilities.

As shown in Appendix C.4, we can again express the marginal implementation cost as the covariance
between θi and MICi,t, but this last term takes a different form. While in our benchmark the covariance
was positive when increasing aggregate consumption led richer households (higher θi) to consume
relatively more or work relatively less compared to poorer households, now its value is also higher
when the energy needs of richer agents increase relative to poorer households. Using our functional
form for utility, we again see that this additional energy demand effect would disappear if the relative
energy consumption of two agents was constant over time, or simply unaffected by changes in aggregate
consumption (which is the case when σ = 1).

The expression of the marginal utility of consumption (Vc,t) is also affected by the presence of a
second consumption good, since utility is not strongly separable in C and D. Regarding the marginal
dis-utility from pollution (VZ,t), the energy consumption good has no direct impact, but heterogeneity
in the relative sensitivity to the environmental variable captured by the distribution of χi may play a
role. Indeed, we now have

VZ,t = −(1 + cov(λi, χi))2α0Zt(1 + α0Z
2
t )

σ−2,

so that the distribution of χi matters in the marginal valuation of pollution to the extent that it is
correlated with the planner’s weights. When the agents most valued by the planner are more sensitive
to pollution, the tax is set at a higher level. If we assume that the planner has utilitarian preferences
however, then for all i, λi is constant and the distribution of χi has no impact on the aggregate marginal
dis-utility from pollution.

The role of preferences heterogeneity In the special case where preferences are homogeneous
(i.e. assuming that for t ≥ 0 and for all i, d̄i,t = d̄t and χi = 1), we have Λt = 0, and all tax
formulas remain unchanged relative to our benchmark. In particular, although poor households spend
a larger share of their budget in energy, the pollution tax formula remains the same and the excise
tax on energy consumption is null. This result is reminiscent of Jacobs and van der Ploeg (2019) who
show that as long as Engel curves are linear—which is the case with Stone-Geary utility—corrective
taxation should not serve to address redistributive objectives, even when non-linear income taxation
is not available. Still, the distribution of market weights is affected by the consumption of a second
good: having a second good modeled as a necessity generates a fixed-cost to households welfare, which
affects the whole distribution of welfare. Hence, even though the optimal tax formulas are preserved,
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the level of the tax rates will be affected by this additional source of heterogeneity as the formulas will
be evaluated at a different allocation.

With heterogeneous preferences for energy consumption, Λt is not generally equal to zero anymore.
When the consumption threshold (d̄i) varies positively with the relative planner’s weight (λi/φi)—i.e.
when individuals who are relatively more valued by the planner are also the ones with higher energy
needs—then Λt is negative. This has two effects. First, it affects the implementation cost. The sign of
this effect depends on the value of σ, which once again captures the price effect discussed above. For
σ > 1, a negative Λt will lower the labor income tax, the pollution tax, and the absolute value of the
excise tax on energy consumption. The second effect is captured by the numerator of the excise tax
on energy consumption: when Λt is negative, this tax is negative. The logic behind this result is that
the aggregate Engel curve being non-linear with heterogeneous preferences, commodity taxes offer an
additional levy for redistribution. When the agents who are valued relatively more by the planner also
have higher energy needs, the planner can target these agents by subsidizing the energy good.

The sign and magnitude of the previous mechanisms therefore depend on the distribution of {d̄i}i∈I ,
both between and within productivity types. First, as less productive types tend to have higher marginal
utilities of consumption, the relative planner’s weights are generally higher for these agents. Λ will
therefore be lower (resp. higher) to the extent that less (resp. more) productive agents have on average
higher energy needs. Second, for a given productivity level, agents with higher energy needs will also
tend to have higher marginal utilities of consumption because of the higher fixed cost that they incur.
This horizontal heterogeneity will therefore drive the value of Λ downward. Our quantitative analysis
below uses data on U.S. households energy consumption to illustrate the impact of these two sources
of heterogeneity.

6.3.2 Quantitative analysis of the extended model

For each of the ten productivity groups described above, we compute the initial distribution of energy
needs from the Consumer Expenditure Surveys (CEX). The full procedure is described in Appendix
D.1.

[To be included: quantitative analysis.]

7 Conclusion

Should environmental policies be less stringent in the presence of inequalities? Do inequalities increase
when optimal environmental policies are implemented? This paper attempts to shed light on these
questions. We develop a climate-economy model where environmental degradation generates both
production and utility externalities. Our model features heterogeneous agents, which provides a micro-
foundation for the use of distortionary taxes on labor and capital income. We study both theoretically
and quantitatively how different sources of heterogeneity and a concern for redistribution affect the
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optimal carbon tax.

We show that when agents are heterogeneous but individualized lump-sum taxation is not available,
the optimal carbon tax is almost equal to the social cost of carbon (SCC), but the SCC is lower than
it would be absent inequalities. Indeed, tax distortions do not significantly matter for carbon taxation
when distortionary taxes are optimally chosen to provide redistribution, and the optimal carbon tax is
almost Pigouvian. However, inequalities call for lower carbon taxes owing to the fact that the presence
of poor households increases the marginal value of consumption and increases the opportunity cost
of pollution abatement. We also re-examine the double dividend hypothesis, and show that at the
optimum the carbon tax revenue is divided about equally between increasing transfers and reducing
distortionary taxes. This revenue recycling increases the progressivity of the tax system, making the
carbon tax policy relatively more beneficial for poorer households. In the long run however, rich
households experience larger welfare gains from climate change mitigation because their willingness to
pay for environmental improvement is higher.

Our paper includes numerous extensions. We analyze alternative policy scenarios, and multiple
sources of household heterogeneity, including heterogeneous budget shares, unequal initial assets, and
differences in the sensitivity to environmental damages. Still, there are other relevant aspects that we
have abstracted from. In particular, we have left for future research the role of risk—on the economic or
climate side—which could interact with inequalities and be an important determinant of fiscal policies.
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Appendices

A Optimal tax rules in the benchmark model

A.1 Implementability conditions

Let φ ≡ {φi} be the market weights with φi ≥ 0. Then, given aggregate levels ct, ht and Zt, the
individual levels can be found by solving the following static subproblem for each period t:

U (ct, ht, Zt;φ) ≡ max
ci,t,hi,t

∑
i

πiφiu (ci,t, hi,t, Zt) , s.t.
∑
i

πici,t = ct, and
∑
i

πieihi,t = ht. (29)

The Lagrangian for this problem is

L =
∑
i

πiφiu (ci,t, hi,t, Zt) + θct

(
ct −

∑
i

πici,t

)
− θht

(
ht −

∑
i

πieihi,t

)
,

where θct and θht are Lagrange multipliers. Applying the envelope theorem to problem (29), we get

Uc,t = θct , and Uh,t = −θht .

From the first order conditions of problem (29), we also have

φiuc,i,t = θct , and φiuh,i,t = −eiθ
h
t .

It follows that

Uc,t = φiuc,i,t, (30)

Uh,t =
φiuh,i,t

ei
. (31)

In any competitive equilibrium these optimality conditions must hold for every agent i. Hence, using
(30), (31), and agents’ first order conditions given by

βt uc,i,t
uc,i,0

= pt, ∀ t ≥ 0, (32)

uh,i,t
uc,i,t

= − (1− τH,t) eiwt, ∀ t ≥ 0, (33)

we obtain
Uh,t

Uc,t
=

uh,i,t
uc,i,tei

= −wt (1− τH,t) , (34)

and
Uc,t

Uc,0
=

uc,i,t
uc,i,0

=
pt
βt

. (35)

Given the relationships above we can derive the implementation condition which relies only on the
aggregates ct, ht, and market weights φ. Let cmi,t (ct, ht;φ) and hmi,t (ct, ht;φ) be the argmax of problem
(29). The budget constraint of agent i implies

∞∑
t=0

Ntpt
(
cmi,t (ct, ht;φ)− (1− τH,t)wteih

m
i,t (ct, ht;φ)

)
≤ R0N0ai,0 + T,
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which using (34) and (35) can be restated as

Uc,0

(
R0N0ai,0 + T

)
≥

∞∑
t=0

Ntβ
t

(
Uc,tc

m
i,t

(
ct, ht;φ

)
+ Uh,teih

m
i,t

(
ct, ht;φ

))
, ∀ i. (36)

A.2 Ramsey problem

A.2.1 Problem

Let λ ≡ {λi} be the planner’s welfare weight on type i, with
∑

i πiλi = 1. Define

W (ct, ht, Zt;φ, θ, λ) ≡
∑
i

πiλiu
(
cmi,t (ct, ht;φ) , h

m
i,t (ct, ht;φ) , Zt

)
+
∑
i

πiθi
[
Uc,tc

m
i,t (ct, ht;φ) + Uh,teih

m
i,t (ct, ht;φ)

]
where πiθi is the Lagrange multiplier on the implementability constraint of agent i, and θ ≡ {θi}. The
Ramsey problem can be written as

max
{Ct,H1,t,H2,t,K1,t,K2,t,

Et,Zt,µt}∞t=0,T,φ

∑
t,i

Ntβ
tW (ct, ht, Zt;φ, θ, λ)− Uc,0

∑
i

πiθi (R0N0ai,0 + T )

subject to

Ntct +Gt +Kt+1 +Θt (µt, Et) = (1−D (Zt))A1,tF (K1,t,H1,t, Et) + (1− δ)Kt, ∀ t ≥ 0,

Et = A2,tG (K2,t,H2,t) , ∀ t ≥ 0,

Zt = J
(
S0, E

M
0 , ..., EM

t , η0, ..., ηt
)
, ∀ t ≥ 0,

FK,tGH,t = GK,tFH,t, ∀ t ≥ 0,

K1,t +K2,t = Kt, ∀ t ≥ 0,

H1,t +H2,t = Ntht, ∀ t ≥ 0,

where βtνjt for j ∈ {1, 2, 3} are the Lagrange multipliers on the feasibility constraints in the order
above. When using a functional form for households’ utility below, it will also be convenient to add
an additional constraint from the normalization of market weights. Because this constraint is a simple
normalization, it has no impact on the resulting allocations.

In what follows, we assume that there is no initial wealth inequality, that is ai,0 = aj,0 for every i

and j. We relax this assumption in Appendix B.
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A.2.2 First order conditions

The first order conditions are

[ct] : Wc (ct, ht;φ, θ, λ)− ν1,t = 0, ∀ t ≥ 0, (37)

[H1,t] : Wh (ct, ht;φ, θ, λ) + ν1,t (1−D (Zt))A1,tFH (K1,t,H1,t, Et) = 0, ∀ t ≥ 0, (38)

[H2,t] : Wh (ct, ht;φ, θ, λ) + ν2,tA2,tGH (K2,t,H2,t) = 0, ∀ t ≥ 0, (39)

[K1,t+1] : −ν1,t + [(1−D (Zt+1))A1,t+1FK (K1,t+1,H1,t+1, Et+1) + (1− δ)]βν1,t+1 = 0, ∀ t ≥ 0,

(40)

[K2,t+1] : −ν1,t +A2,t+1GK (K2,t+1,H2,t+1)βν2,t+1 + (1− δ)βν1,t+1 = 0, ∀ t ≥ 0, (41)

[Et] : −ν1,t (ΘE,t (µt, Et)− (1−D (Zt))A1,tFE (K1,t,H1,t, Et))− ν2,t

−
∞∑
j=0

βjν3,t+jJEM
t ,t+j (1− µt) = 0, ∀ t ≥ 0, (42)

[Zt] : NtWZ (ct, ht, Zt;φ, θ, λ)− ν1,tD
′ (Zt)A1,tF (K1,t,H1,t, Et) + ν3,t = 0, ∀ t ≥ 0, (43)

[µt] : −ν1,tΘµ,t (µt, Et) +

∞∑
j=0

βjν3,t+jJEM
t ,t+jEt = 0, ∀ t ≥ 0, (44)

[T ] :
∑
i

πiθi = 0, (45)

and at t = 0, [
τk0

]
: Uc (c0, h0) ((1−D (Z0))A1,0FK (K1,0,H1,0, E0)− δ)N0

∑
i

πiθiai,0 = 0 (46)

[K1,0] : [(1−D (Z0))A1,0FK (K1,0,H1,0, E0) + (1− δ)] ν1,0 − κ = 0 (47)

[K2,0] : A2,0GK (K2,0,H2,0) ν2,0 + (1− δ) ν1,0 − κ = 0 (48)

where κ is the Lagrange multiplier on the constraint K1,0 +K2,0 = K0, and it follows that

(1−D (Z0))A1,0FK (K1,0,H1,0, E0) ν1,0 = A2,0GK (K2,0,H2,0) ν2,0,

which together with (38) and (39), implies that

FK (K1,0,H1,0, E0)

FH (K1,0,H1,0, E0)
=

GK (K2,0,H2,0)

GH (K2,0,H2,0)
. (49)

As in any other period, in t = 0 the requirement that the marginal rates of technical substitution are
equated between sectors is satisfied at the second-best allocation. Therefore, in most of what follows
we ignore the multiplier on this constraint.
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A.3 Optimal taxes

A.3.1 Capital and Labor income taxes

From (37) and (38) we obtain

(1−D (Zt))A1,tFH,t = −
Wh,t

Wc,t
, ∀ t ≥ 0, (50)

and using the intertemporal condition (40) we get

R∗
t+1 ≡ 1 + rt+1 − δ =

1

β

Wc,t

Wc,t+1
, ∀ t ≥ 0, (51)

These two equations can be used to back out the optimal taxes on labor and capital income. Plugging
(50) into (34) implies

Uh,t

Uc,t
=

Wh,t

Wc,t
(1− τH,t) ,

which can be rearranged into
τH,t = 1−

Uh,t

Uc,t

Wc,t

Wh,t
. (52)

In any competitive equilibrium (35) holds, which together with pt = Rt+1pt+1 implies

Uc,t+1

Uc,t
βRt+1 = 1.

Substituting this into (51), it follows that

Rt+1

R∗
t+1

=
Wc,t+1

Wc,t

Uc,t

Uc,t+1
. (53)

A.3.2 Excise taxes of energy and emissions

From the abatement first-order condition (44) and the energy firm abatement decision (9) we have that

τE,t =
Θµ,t

Et
=

1

ν1,t

∞∑
j=0

βjν3,t+jJEM
t ,t+j .

From the climate variable first-order condition (43) we have that

ν3,t = ν1,tD
′
tA1,tF (K1,t,H1,t, Et)−NtWZ,t,

hence the pollution tax is given by

τE,t =
1

ν1,t

∞∑
j=0

βj
(
ν1,t+jD

′
t+jA1,t+jFt+j −Nt+jWZ,t+j

)
JEM

t ,t+j . (54)

From the energy first-order condition (42) we have that

−ν1,t

(
ΘE,t + (1− µt)

Θµ,t

Et
− (1−D(Zt))A1,tFE,t

)
= ν2,t, (55)
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and combining the first-order conditions for sectoral labor supplies (38) and (39), it follows that

ν2,t
ν1,t

=
(1−D (Zt))A1,tFH,t

A2,tGH,t
.

From (4) and (8) we also have

(1−D (Zt))A1,tFH,t

A2,tGH,t
= pE,t − τI,t − τE,t(1− µt)−ΘE,t.

Hence, using (5), (9), and (55) we have

−ΘE,t − (1− µt)τE,t + pE,t = pE,t − τI,t − τE,t(1− µt)−ΘE,t,

and therefore
τI,t = 0. (56)

A.4 Explicit formulas

A.4.1 Characterization of equilibrium

To obtain explicit formulas, it is convenient to normalize market weights as follows∑
j

πj

(
φje

γ(σ−1)
j

) 1
σ−(1−σ)γ

= 1.

Using the period utility function defined in (23), the Lagrangian for the characterization problem
defined by (15) is

L =
∑
i

πiφi

[
(ci,t (1− ςhi,t)

γ)1−σ

1− σ
+

(
1 + α0Z

2
t

)−(1−σ)

1− σ

]
+θct

(
ct −

∑
i

πici,t

)
−θht

(
ht −

∑
i

πieihi,t

)
,

The first order conditions are

[ci,t] : φi (ci,t (1− ςhi,t)
γ)1−σ c−1

i,t = θct , ∀ t ≥ 0, (57)

[hi,t] : φi (ci,t (1− ςhi,t)
γ)1−σ γς (1− ςhi,t)

−1 = eiθ
h
t , ∀ t ≥ 0, (58)

rearranging yields

ci,t =
θht
θct

ei (1− ςhi,t)

γς
,

so that

ci,t =

(
θct
φi

(
θht
θct

ei
γς

)γ(1−σ)
)− 1

σ−(1−σ)γ

1− ςhi,t =
θct
θht

γς

ei

(
θct
φi

(
θht
θct

ei
γς

)γ(1−σ)
)− 1

σ−(1−σ)γ

,
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and summing across types (given that ct =
∑

i πici,t, and ht =
∑

i πieihi,t)

ct =

(
θct

(
θht
θct

1

γς

)γ(1−σ)
)− 1

σ−(1−σ)γ ∑
i

πi

(
e
γ(1−σ)
i

φi

)− 1
σ−(1−σ)γ

(59)

1− ςht =
θct
θht

γς

(
θct

(
θht
θct

1

γς

)γ(1−σ)
)− 1

σ−(1−σ)γ ∑
i

πi

(
ei
φi

γ(1−σ)
)− 1

σ−(1−σ)γ

(60)

It follows that

cmi,t (ct, ht;φ) = ωict, (61)

1− ςhmi,t (ct, ht;φ) =
ωi

ei
(1− ςht) , (62)

where

ωi =

(
φi (ei)

γ(σ−1)
) 1

σ−(1−σ)γ

∑
i πi

(
φje

γ(σ−1)
j

) 1
σ−(1−σ)γ

=
(
φi (ei)

γ(σ−1)
) 1

σ−(1−σ)γ

Hence, we can write aggregate indirect utility U (ct, ht, Zt;φ) in terms of the aggregates ct, ht, and Zt

U (ct, ht, Zt, φ) =
∑
j

πjφj

(
ω1+γ
j

eγj

)1−σ
(ct (1− ςht)

γ)1−σ

1− σ
+
∑
i

πiφi

(
1 + α0Z

2
t

)−(1−σ)

1− σ
, (63)

=
(ct (1− ςht)

γ)1−σ

1− σ
+ Γ

(
1 + α0Z

2
t

)−(1−σ)

1− σ
, (64)

since from the normalization of market weights we have

∑
j

πjφj

(
ω1+γ
j

eγj

)1−σ

=
∑
j

πj

(
φje

γ(σ−1)
j

) 1
σ−(1−σ)γ

= 1,

and with Γ ≡
∑

i πiφi.

A.4.2 Explicit tax formulas

From (36), substituting the derivatives of U into the definition of W (ct, ht, Zt;φ, θ, λ) we get

W (ct, ht, Zt;φ, θ, λ) =
∑
i

πiλi

(
ωi

φi

(ct (1− ςht)
γ)1−σ

1− σ
+

(
1 + α0Z

2
t

)−(1−σ)

1− σ

)
+
∑
i

πiθi

[
(ct (1− ςht)

γ)1−σ ωi − γ (ct (1− ςht)
γ)1−σ (1− ςht)

−1 (ei − ωi (1− ςht))
]

(65)

Collecting terms and simplifying we obtain

W (ct, ht, Zt;φ, θ, λ) = Φ
(ct (1− ςht)

γ)1−σ

1− σ
+

(
1 + α0Z

2
t

)−(1−σ)

1− σ
+ΨUh,t. (66)
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where

Φ ≡
∑
i

πiωi

(
λi

φi
+ (1− σ) (1 + γ) θi

)
, (67)

Ψ ≡
∑
i

πiθiei
ς

. (68)

Substituting the derivatives into equation (52) we get

τH,t =
Ψς (1− ςht)

−1

Φ+Ψς (1− γ (1− σ)) (1− ςht)
−1 , (69)

substituting the derivatives into (53) yields

Rt+1

R∗
t+1

=
Φ−Ψςγ (1− σ) (1− ςht+1)

−1

Φ−Ψςγ (1− σ) (1− ςht)
−1 , (70)

and substituting the derivatives into (54) we get

τE,t =
1

ν1,t

∞∑
j=0

βj

(
ν1,t+jD

′
t+jA1,t+jFt+j −Nt+jVZ(Zt+j)

)
JEM

t ,t+j , (71)

with ν1,t the multiplier of the resource constraint which we can express as

ν1,t = Vc,t +
∑
i

πiθiMICi,t. (72)

If we add—without loss of generality—the normalization of market weights as a constraint into the
Ramsey problem, we obtain the following first order conditions with respect to market weights∑

t

βtNtWφi,t −
ζ

σ − (1− σ) γ

πiωi

φi
= 0, ∀ i.

From this equation we have that
∞∑
t=0

Ntβ
t (ct (1− ςht)

γ)1−σ

1− σ

(1− σ) (1 + γ)

σ − (1− σ) γ

πiωi

φi

(
λi

φi
+ θi

)
− ζ

σ − (1− σ) γ

πiωi

φi
= 0, ∀ i,

and therefore
λi

φi
+ θi =

ζ

(1− σ) (1 + γ)
∑∞

t=0NtβtŨ (ct, ht)
, ∀ i,

with

Ũ(ct, ht) =
(ct (1− ςht)

γ)1−σ

1− σ
.

Using the fact that ∑
i

πiθi = 0,
∑
i

πiωi = 1, and
∑
i

πiei = 1

it follows that ∑
j

πjλj

φj
=

ζ

(1− σ) (1 + γ)
∑∞

t=0NtβtŨ (ct, ht)
,
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and, therefore
θi =

∑
j

πjλj

φj
− λi

φi
. (73)

This allows us to rewrite

Φ =
∑
i

πiωi

λi

φi
+ (1− σ) (1 + γ)

∑
j

πjλj

φj
− λi

φi


=
∑
j

πj
λj

φj
+
(
1− (1 + γ)(1− σ)

)
cov(λi/φi, ωi),

Ψ =
1

ς

∑
j

πj
λj

φj
(1− ej)

= −cov(λi/φi, ei)

ς
,

where the last result is obtained using the normalization of productivity levels,
∑

i πiei = 1. The
implementability conditions can be rewritten as

ωi =
Uc,0 (R0N0ai,0 + T ) +Mei

(1− σ) (1 + γ)
∑∞

t=0NtβtŨ (ct, ht)
, ∀ i, (74)

with

M ≡
∞∑
t=0

Ntβ
tγ (ct (1− ςht)

γ)1−σ (1− ςht)
−1 .

Since
ωi =

(
φie

γ(σ−1)
i

) 1
σ−(1−σ)γ

we can express market weights as

φi =
ω
σ−(1−σ)γ
i

e
γ(σ−1)
i

=
1

e
γ(σ−1)
i

(
Uc,0 (R0N0ai,0 + T ) +Mei

(1− σ) (1 + γ)
∑∞

t=0NtβtŨ (ct, ht)

)σ−(1−σ)γ

A.4.3 Comparison with first-best

First-best pollution tax To compare our second-best results with the first-best, we solve the same
Ramsey problem except that we now allow for individualized lump-sum transfers. All first order
conditions remain the same except for the one with respect to T given by (45): since we now have
individualized instruments Ti, we obtain

θi = 0, ∀i, (75)

hence for all t,
∑

i πiθiMICi,t = 0. From (73), this also implies that

λi

φi
=
∑
j

πjλi

φi
, ∀i, (76)
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and as a consequence we have Ψ = 0, so that for all t, τH,t = 0 and τK,t = 0. Substituting for ν1,t in
(54), we can express the first-best tax as

τFB
E,t =

∞∑
j=0

βj

(
Vc,t+j

Vc,t
D′

t+jA1,t+jFt+j −
Nt+jVZ,t+j

Vc,t

)
JEM

t ,t+j . (77)

The first-best tax is equal to the social cost of the externality—i.e., to the Pigouvian tax—evaluated
at the first-best allocation.

The marginal cost of funds Let us now decompose the Pigouvian tax formula into a production
damage component and a utility damage component:

τPigou,Y
E,t =

∞∑
j=0

βj Vc,t+j

Vc,t
D′

t+jA1,t+jFt+jJEM
t ,t+j ,

τPigou,U
E,t = (−1)

∞∑
j=0

βjNt+jVZ,t+j

Vc,t
JEM

t ,t+j .

If we define the marginal cost of funds as the ratio of the public to the private marginal utility of
consumption,

MCFt ≡
ν1,t
Vc,t

,

the share of marginal production damages occurring at time t+s due to a marginal change in emissions
at time t, as

∆t+s ≡
βjD′

t+sA1,t+sFt+sJEM
t ,t+s∑∞

j=0 β
jD′

t+jA1,t+jFt+jJEM
t ,t+j

,

then the second-best tax given by (71) can be re-written as a function of the marginal cost of funds
and the first-best tax rule evaluated at the second-best allocation

τE,t =

∞∑
j=0

MCFt+j

MCFt
∆t+j τ

Pigou,Y
E,t

∣∣∣
SB

+
τPigou,U
E,t

∣∣∣
SB

MCFt
.

From (53), and using the fact that
Vc,t+j

Vc,t
=

Uc,t+j

Uc,t

we can also write the ratio of MCFs as

MCFt+j

MCFt
=

j∏
k=1

Rt+k

R∗
t+k

,

from which we see that the ratio is equal to 1 if the capital tax is null for all future periods where current
emissions generate production damages. Thus, as in Barrage (2019), the optimal tax on production
damage is not distorted as long as, going forward, the capital income tax is optimally set to zero.
Substituting for ν1,t in the definition of the MCF, we also see that

MCFt = 1 +

∑
i πiθiMICi,t

Vc,t
,
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from which it appears that the MCF is equal to one when the implementation cost −
∑

i πiθiMICi,t is
null. In this situation, the second-best pollution tax corresponds to the Pigouvian tax formula evaluated
at the second-best allocation.

The marginal implementation cost Using our functional form for U , we can show that

ICi,t =
(
ct(1− ςht)

γ
)(1−σ)

(
ωi + γ

(
ωi −

ei
(1− ςht)

))
, (78)

from which we can write
MICi,t = (1− σ)

ICi,t

Ct
. (79)

Using the fact that
∑

i πiθi = 0, we can re-write the marginal implementation cost as

−
∑
i

πiθiMICi,t = (σ − 1)
cov(θi, ICi,t)

ct
. (80)

This term is equal to 0 when either σ = 1, or θi and ICi,t are uncorrelated.

Price effect To understand the role of σ, it is useful to go back to the origin of the the term
ICi(ct, ht, φ). This term comes from households’ budget constraint (2) in which we have substituted
for the price and real wage using (34) and (35). From these equations, it appears that when making
more resources available to households, the price goes down since

pt = βt
( ct
c0

)−σ( 1− ςht
1− ςh0

)γ(1−σ)
.

When σ = 1, the price effect exactly offsets the volume effect so that households’ expenditures and
nominal income remain unchanged, hence the planner does not need to change the value of the lump-
sum transfer and the implementation cost remains constant.

Labor supply effect To determine the sign of the covariance term, we can examine the ratio of the
period implemantation cost for two agents i and j such that ei > ej . From (78), we have

ICi,t

ICj,t
=

ωi + γ
(
ωi − ei

(1−ςht)

)
ωj + γ

(
ωj − ej

(1−ςht)

) .
Although the discounted sum of ICi,t is invariant across type, in period t this ratio may be below or
above 1 depending on the value of the aggregate labor supply. In particular, we have

∂
ICi,t

ICj,t

∂ht
=

ςγ(1 + γ)
(
ejωi − eiωj

)
(1− ςht)2

(
ωj(1 + γ)− γej

(1−ςht)

)2 . (81)

From (74), we can also show that with homogeneous initial wealth (or full expropriation of initial
wealth), when transfers plus initial assets are positive (as they are in our quantitative analysis) then
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ωi/ei is strictly declining in ei, hence for ei > ej , the derivative in (81) is negative. This result
means that when ht is high relative to its average value, the relative labor supply of highly productive
households compared to less productive households is higher, hence more productive households need
lower transfers to satisfy the planners’ allocation at that period. If the more productive also have a
lower marginal utility of consumption (hence a higher θi), then the covariance term in equation (80) is
negative when aggregate labor supply is relatively high. Conversely, when transfers are negative, the
derivative in (81) is positive and the covariance term is negative when the aggregate labor supply is
low.

Differences from individual allocations We can express the aggregate utility defined using the
planner’s weights as follows

V (ct, ht, Zt;φ, λ) =

∑
i πiλiu(ci,t, hi,t)∑
i πiφiu(ci,t, hi,t)

(ct (1− ςht)
γ)1−σ

1− σ
+

(
1 + α0Z

2
t

)−(1−σ)

1− σ
,

hence the marginal utility of consumption from the planner’s perspective is

Vc,t =

∑
i πiλiu(ci,t, hi,t)∑
i πiφiu(ci,t, hi,t)

Uc,t.

From our characterization problem, we know that market weights are determined by the following
expression

φiuc,i,t = Uc,t, ∀i,

from which we can rewrite
Vc,t =

∑
i

πiλi
uc,i,tci,t

ct
(82)

Thus, between the first-best and the second-best case, the marginal utility of consumption will differ
due to the path of aggregate consumption, as well as the distribution of individual allocations. Holding
aggregate consumption constant, we see that an increase in the variance of ci,t has ambiguous effects. On
the one hand, since u(c, h) is concave in c, the average marginal utility is increasing with consumption
inequalities. On the other hand, higher marginal utilities are weighted by lower consumption levels,
hence increasing consumption dispersion reduces the relative weight given to high marginal utilities.
The net effect depends on the curvature of the utility function. Substituting uc,i,t by its functional
expression in (82), we have

Vc,t =
∑
i

πiλi

(
ci,t(1− ςhi,t)

γ
)1−σ

ct

and we see that when σ = 1, the two previous effects cancel each other and the distribution of individual
allocations has no incidence on the marginal utility of consumption.

B Optimal tax rules with initial wealth inequality

In Appendix A.2.1, we describe the Ramsey problem with wealth inequality
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B.1 First order conditions

For t ≥ 1, the conditions are exactly the same as the ones derived above, in particular, we have that∑
i πiθi = 0, which we use to simplify the equations below. The period-0 marginal rate of technical

substitution constraint is no longer automatically satisfied, so let Γ0 denote the Lagrange multiplier on
this constraint. The first order conditions for period 0 are

[c0] : Wc,0 − ν1,0 − Ucc,0

∑
i

πiθiR0ai,0 = 0, (83)

[H1,0] : Wh,0 + ν1,0 (1−D0)A1,0FH,0 − Uch,0

∑
i

πiθiR0ai,0 (84)

−N0Uc,0

∑
i

πiθiai,0 (1− τK,0) (1−D0)A1,0FKH,0 + Γ0 (FHH,0GK,0 − FKH,0GH,0) = 0,

[H2,0] : WH,0 + ν2,0A2,0GH,0 − Uch,0

∑
i

πiθiR0ai,0 + Γ0 (FH,0GKH,0 − FK,0GHH,0) = 0, (85)

[K1,0] : ((1−D0)A1,0FK,0 + (1− δ)) ν1,0 −N0Uc,0

∑
i

πiθiai,0 (1− τK,0) (1−D0)A1,0FKK,0 − κ (86)

+ Γ0 (FHK,0GK,0 − FKK,0GH,0) = 0,

[K2,0] : A2,0GK,0ν2,0 + (1− δ) ν1,0 − κ+ Γ0 (FH,0GKK,0 − FK,0GHK,0) = 0, (87)

[E0] : −
(
µ0Θ

′
0 − (1−D0)A1,0FE,0

)
ν1,0 − ν2,0 −

∞∑
j=0

βjν3,jJEM
0 ,j (1− µ0) (88)

−N0Uc,0

∑
i

πiθiai,0 (1− τK,0) (1−D0)A1,0FKE,0 + Γ0 (FHE,0GK,0 − FKE,0GH,0) = 0,

[Z0] : N0WZ,0 − ν1,0D
′
0A1,0F0 + ν3,0 +N0Uc,0

∑
i

πiθiai,0 (1− τK,0)D
′
0A1,0FK,0 = 0. (89)

B.2 Multiplier on period-0 marginal rate of technical substitution constraint

From (86) and (87), it follows that

ν2,0
ν1,0

= (1−D0)
A1,0FK,0

A2,0GK,0
− N0Uc,0

ν1,0

∑
i

πiθiai,0 (1− τK,0) (1−D0)
A1,0FKK,0

A2,0GK,0

+
Γ0

ν1,0

((FHK,0GK,0 − FKK,0GH,0)− (FH,0GKK,0 − FK,0GHK,0))

A2,0GK,0
.

From (84) and (85), it follows that

ν2,0
ν1,0

= (1−D0)
A1,0FH,0

A2,0GH,0
− N0Uc,0

ν1,0

∑
i

πiθiai,0 (1− τK,0) (1−D0)
A1,0FKH,0

A2,0GH,0

+
Γ0

ν1,0

((FHH,0GK,0 − FKH,0GH,0)− (FH,0GKH,0 − FK,0GHH,0))

A2,0GH,0
.
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Hence, putting these two equations together, we obtain

Γ0 =
N0Uc,0

∑
i πiθiai,0 (1− τK,0) (1−D0)A1,0 (GK,0FKH,0 −GH,0FKK,0){

GK,0 ((FHH,0GK,0 − FKH,0GH,0)− (FH,0GKH,0 − FK,0GHH,0))

−GH,0 ((FHK,0GK,0 − FKK,0GH,0)− (FH,0GKK,0 − FK,0GHK,0))

} .

B.3 Labor income taxes

From (84) and (83) we obtain

(1−D0)A1,0FH,0 =

{
−Wh,0 + Uch,0

∑
i πiθiR0ai,0

+N0Uc,0
∑

i πiθiai,0 (1− τK,0) (1−D0)A1,0FKH,0 − Γ0 (FHH,0GK,0 − FKH,0GH,0)

}
Wc,0 − Ucc,0

∑
i πiθiR0ai,0

(90)
Plugging (90) into (34) implies

Uh,0

Uc,0
=

{
Wh,0 − Uch,0

∑
i πiθiR0ai,0

−N0Uc,0
∑

i πiθiai,0 (1− τK,0) (1−D0)A1,0FKH,0 + Γ0 (FHH,0GK,0 − FKH,0GH,0)

}
Wc,0 − Ucc,0

∑
i πiθiR0ai,0

(1− τH,0) ,

which can be rearranged into

τH,0 = 1−
Uh,0

Uc,0

Wc,0 − Ucc,0
∑

i πiθiR0ai,0{
Wh,0 − Uch,0

∑
i πiθiR0ai,0

−N0Uc,0
∑

i πiθiai,0 (1− τK,0) (1−D0)A1,0FKH,0 + Γ0 (FHH,0GK,0 − FKH,0GH,0)

} .

(91)

B.4 Capital income taxes

From (40) and (83) we obtain

R∗
1 ≡ 1 + r1 − δ =

1

β

Wc,0 − Ucc,0
∑

i πiθiR0ai,0
Wc,1

. (92)

In any competitive equilibrium (35) holds, which implies

Uc,1

Uc,0
βR1 = 1.

Substituting this into (51), it follows that

R1

R∗
1

=
Wc,1

Wc,0 − Ucc,0
∑

i πiθiR0ai,0

Uc,0

Uc,1
. (93)
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B.5 Excise taxes of energy and emissions

From the abatement first-order condition (44) we have that

Θ′
0 =

1

ν1,0

∞∑
j=0

βjν3,jJEM
0 ,j .

From the climate variable first-order condition (89) we have that

ν3,0 = ν1,0D
′
0A1,0F0 −N0WZ,0 −N0Uc,0

∑
i

πiθiai,0 (1− τK,0)D
′
0A1,0FK,0.

From the energy first-order condition (88) we have that

(1−D0)A1,0FE,0−
ν2,0
ν1,0

= ∆′
0+N0

Uc,0

ν1,0

∑
i

πiθiai,0 (1− τK,0) (1−D0)A1,0FKE,0−
Γ0

ν1,0
(FHE,0GK,0 − FKE,0GH,0) .

Combining the first-order conditions for sectoral labor supplies (84) and (85), it follows that

ν2,0
ν1,0

= (1−D0)
A1,0FH,0

A2,0GH,0
− N0Uc,0

ν1,0

∑
i

πiθiai,0 (1− τK,0) (1−D0)
A1,0FKH,0

A2,0GH,0

+
Γ0

ν1,0

((FHH,0GK,0 − FKH,0GH,0)− (FH,0GKH,0 − FK,0GHH,0))

A2,0GH,0
,

and, therefore

(1−D0)A1,0FE,0 = Θ′
0 + (1−D0)

A1,0FH,0

A2,0GH,0
+N0

Uc,0

ν1,0

∑
i

πiθiai,0 (1− τK,0) (1−D0)

(
A1,0FKE,0 −

A1,0FKH,0

A2,0GH,0

)
+

Γ0

ν1,0

(
((FHH,0GK,0 − FKH,0GH,0)− (FH,0GKH,0 − FK,0GHH,0))

A2,0GH,0
− (FHE,0GK,0 − FKE,0GH,0)

)
.

Then, from (9) we have that

τE,0 = Θ′
0 =

1

ν1,0

∞∑
j=0

βjν3,jJEM
0 ,j , (94)

and from (4), (5), and (8) we have that

(1−D0)A1,0FH,0 = ((1−D0)A1,0FE,0 − τI,0 − τE,0)A2,0GH,0,

and therefore

τI,0 = N0
Uc,0

ν1,0

∑
i

πiθiai,0 (1− τK,0) (1−D0)

(
A1,0FKE,0 −

A1,0FKH,0

A2,0GH,0

)
+

Γ0

ν1,0

(
(FHH,0GK,0 − FKH,0GH,0)− (FH,0GKH,0 − FK,0GHH,0)

A2,0GH,0
− (FHE,0GK,0 − FKE,0GH,0)

)
.

Finally, using (43), (89) in (94) we get

τE,0 =
1

ν1,0

∞∑
j=0

βj
(
ν1,jD

′
jA1,jFj −NjWZ,j

)
JEM

0 ,j −N0
Uc,0

ν1,0

∑
i

πiθiai,0 (1− τK,0)D
′
0A1,0FK,0JEM

0 ,0.
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C Optimal tax rules with Stone-Geary utility and heterogeneous
preferences

The derivation of optimal tax rules in this extended version of the model closely follows the method
applied to solve the benchmark model. This appendix highlights the differences with the benchmark
presented in Appendix A.

C.1 Characterization of equilibrium

Let φ ≡ {φi} be the market weights normalized so that∑
j

πj

(
φje

γ(σ−1)
j

) 1
1−(1+ϵ+γ)(1−σ)

= 1,

with φi ≥ 0. Then, given aggregate levels ct, dt, ht and Zt, the individual levels can be found by solving
the following static subproblem for each period t:

U (ct, dt, ht, Zt;φ) ≡ max
ci,t,di,t,hi,t

∑
i

πiφiui (ci,t, di,t, hi,t, Zt) ,

s.t.
∑
i

πici,t = ct, and
∑
i

πidi,t = dt, and
∑
i

πieihi,t = ht.
(95)

Following the same steps as in Appendix A, we obtain the following solutions for this problem

cmi,t (ct, dt, ht;φ) = ωict, (96)

dmi,t (ct, dt, ht;φ) = d̄i,t + ωi

(
dt − d̄t

)
, (97)

1− ςhmi,t (ct, dt, ht;φ) =
ωi

ei
(1− ςht), (98)

with d̄t =
∑

i πid̄i,t, and where

ωi =
(
φie

γ(σ−1)
i

) 1
1−(1+ϵ+γ)(1−σ) (99)

which enables us to write the aggregate indirect utility in terms of the aggregates and market weights

U (ct, dt, ht, Zt) =

(
ct(dt − d̄t)

ϵ (1− ςht)
γ
)1−σ

1− σ
+ Γχ

(
1 + α0Z

2
t

)−(1−σ)

1− σ
, (100)

with Γχ ≡
∑

i πiφiχi.

C.2 Implementability condition

From the first order conditions of problem (95) and applying the envelope theorem we have

Uc,t = φiuc,i,t, (101)

Ud,t = φiud,i,t, (102)

Uh,t =
φiuh,i,t

ei
, (103)
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which together with the first order conditions of individual agents’ problems give
Uh,t

Uc,t
=

uh,i,t
uc,i,tei,t

= −wt (1− τH,t) , (104)

Ud,t

Uc,t
=

ud,i,t
uc,i,t

= pE,t + τD,t, (105)

and
Uc,t

Uc,0
=

uc,i,t
uc,i,0

=
pt
βt

. (106)

Using (104), (105), and (106) to substitute in households’ budget constraint (28), we obtain the imple-
mentability conditions

Uc,0 (R0N0ai,0 + T ) ≥
∞∑
t=0

Ntβ
t
(
Uc,tc

m
i,t

(
ct, dt, ht;φ

)
+Ud,td

m
i,t (ct, dt, ht;φ)+Uh,teih

m
i,t (ct, dt, ht;φ)

)
, ∀i.

(107)

C.3 Ramsey problem

Let again λ ≡ {λi} be the planner’s welfare weight on type i, with
∑

i πiλi = 1. Define the pseudo-utility
function

W
(
ct, dt, ht, Zt;φ, θ, λ

)
≡
∑
i

πiλiui
(
cmi,t
(
ct, dt, ht;φ

)
, dmi,t

(
ct, dt, ht;φ

)
, hmi,t

(
ct, dt, ht;φ

)
, Zt

)
+
∑
i

πiθi

[
Uc,tc

m
i,t

(
ct, dt, ht;φ

)
+ Ud,td

m
i,t

(
ct, dt, ht;φ

)
+ Uh,tei,th

m
i,t

(
ct, dt, ht;φ

)]
,

where πiθi is the Lagrange multiplier on the implementability constraint of agent i, and θ ≡ {θi}. The
new Ramsey problem can be written as

max
{ct,H1,t,H2,t,K1,t,K2,t,
dt,E1,t,Zt,µt}∞t=0,T,φ

∑
t,i

Ntβ
tW (ct, dt, ht, Zt;φ, θ, λ)− Uc,0

∑
i

πiθi (R0N0ai,0 + T ) ,

subject to

Ntct +Gt +Kt+1 +Θt (µt, Et) = (1−D (Zt))A1,tF (K1,t,H1,t, E1,t) + (1− δ)Kt, ∀ t ≥ 0,

Et = A2,tG (K2,t,H2,t) , ∀ t ≥ 0,

Zt = J
(
S0, E

M
0 , ..., EM

t , η0, ..., ηt
)
, ∀ t ≥ 0,

FK(K1,tH1,t, E1,t)GH(K2,tH2,t) = FH(K1,tH1,t, E1,t)GK(K2,tH2,t), ∀ t ≥ 0,

K1,t +K2,t = Kt, ∀ t ≥ 0,

H1,t +H2,t = Ntht, ∀ t ≥ 0,

Ntdt + E1,t = Et, ∀ t ≥ 0,∑
j

πj

(
φje

γ(σ−1)
j

) 1
1−(1+ϵ+γ)(1−σ)

= 1,

where Ntdt + E1,t = Et is the only additional constraint compared to the benchmark problem.
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C.4 Optimal taxes

Tax formulas From the first order conditions of the Ramsey problem, we can show that

τH,t = 1−
Uh,t

Uc,t

Wc,t

Wh,t
, (108)

Rt+1

R∗
t+1

=
Wc,t+1

Wc,t

Uc,t

Uc,t+1
, (109)

τE,t =
1

ν1,t

∞∑
j=0

βj
(
ν1,t+jD

′
t+jA1,t+jFt+j −Nt+jWZ,t+j

)
JEM

t ,t+j , (110)

and
τI,t = 0. (111)

Using the first order conditions with respect to dt, E1,t and ct we have

Wd,t = Wc,t(1−D(Zt))A1,tFE,t,

which together with (105) and the final good firm’s first order condition with respect to E1,t (given by
(5) in the benchmark model) gives

τD,t =
Ud,t

Uc,t
−

Wd,t

Wc,t
. (112)

Using our functional form assumption, we can rewrite the pseudo-utility function as follows

W (ct, dt, ht, Zt;φ, θ, λ) = ΦŨ(ct, dt, ht) +

∑
i πiλiχi∑
i πiφiχi

Û(Zt) + ΨUh,t + ΛtUd,t, (113)

with

Ũ(ct, dt, ht) =
(ct(dt − d̄t)

ϵ(1− ςht)
γ)1−σ

1− σ
,

Û(Zt) = Γχ
(1 + α0Z

2
t )

−(1−σ)

1− σ
,

where

Φ ≡
∑
i

πiωi

(λi

φi
+
(
1− σ

)(
1 + ϵ+ γ

)
θi

)
, (114)

Ψ ≡ 1

ς

∑
i

πiθiei, (115)

Λt ≡
∑
i

πiθid̄i,t. (116)

Substituting the derivatives into equations (108), (109), and (112), we get

τH,t = 1−
Φ+Ψ

Uch,t

Uc,t
+ Λt

Ucd,t

Uc,t

Φ+Ψ
Uhh,t

Uh,t
+ Λt

Udh,t

Uh,t

=
Ψς(1− ςht)

−1

Φ+Ψ
ς
(
1−γ(1−σ)

)
(1−ςht)

+ Λt
ϵ(1−σ)

(dt−d̄t)

, (117)
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Rt+1

R∗
t+1

=
Φ+ Λt+1

Ucd,t+1

Uc,t+1
+Ψ

Uch,t+1

Uc,t+1

Φ+ Λt
Ucd,t

Uc,t
+Ψ

Uch,t

Uc,t

=
Φ+ Λt+1

ϵ(1−σ)

(dt+1−d̄t+1)
−Ψ ςγ(1−σ)

(1−ςht+1)

Φ+ Λt
ϵ(1−σ)

(dt−d̄t)
−Ψ ςγ(1−σ)

(1−ςht)

, (118)

and

τD,t =
Λt(dt − d̄t)

−1Ud,t

ΦUc,t +ΨUhc,t + ΛtUdc,t
=

Λt
ϵct

(dt−d̄t)2

Φ+ Ψςγ(σ−1)
(1−ςht)

− Λtϵ(σ−1)

(dt−d̄t)

. (119)

If we define

V
(
ct, dt, ht, Zt;φ, θ, λ

)
≡
∑
i

πiλiui
(
cmi,t
(
ct, dt, ht;φ

)
, dmi,t

(
ct, dt, ht;φ

)
, hmi,t

(
ct, dt, ht;φ

)
, Zt

)
and

ICi(ct, dt, ht, φ) ≡ Uc,tc
m
i,t

(
ct, dt, ht;φ

)
+ Ud,td

m
i,t

(
ct, dt, ht;φ

)
+ Uh,tei,th

m
i,t

(
ct, dt, ht;φ

)
we can also express the optimal pollution tax as

τE,t =
∞∑
j=0

βj

(
Vc,t+j +

∑
i πiθiMICi,t+j

Vc,t +
∑

i πiθiMICi,t
D′

t+jA1,t+jFt+j −
Nt+jVZ,t+j

Vc,t +
∑

i πiθiMICi,t

)
JEM

t ,t+j .

Comparison with the benchmark formula The previous expression is the same as the one found
in our benchmark, and the optimal tax will again be equal to the social cost of pollution when the
marginal implementation cost (−

∑
i πiθiMICi,t) is null, which is the case in the first-best.

Compared to our benchmark, the marginal implementation cost now includes an additional term
from the derivative of Ud with respect to consumption. In particular, we again have

−
∑
i

πiθiMICi,t = (σ − 1)
cov(θi, ICi,t)

ct
,

but now the ratio of the period implemantation cost for two agents i and j is

ICi,t

ICj,t
=

(1 + ϵ+ γ)ωi +
ϵd̄i,t

(dt−d̄t)
− γei

(1−ςht)

(1 + ϵ+ γ)ωj +
ϵd̄j,t

(dt−d̄t)
− γej

(1−ςht)

.

Thus, the sign of the marginal implementation cost depends on a price effect through σ, and on an
energy demand and labor supply effects from cov(θi, ICi,t). The covariance term is higher in periods
when richer households (higher θi) work relatively less, or when they have higher energy needs relative
to poor households compared to an average period.

The value of the optimal tax also depends on the marginal dis-utility from pollution (VZ,t) which
now accounts for the weights χi. In particular, we now have

VZ,t =−
∑
i

πiλiχi2α0Zt(1 + α0Z
2
t )

σ−2

=− (1 + cov(λi, χi))2α0Zt(1 + α0Z
2
t )

σ−2
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where the last result is obtained using the normalization of the sums of λi and χi. Thus, when the
planner has utilitarian preferences, for all i, λi = 1 and the distribution of χi has no impact on the
aggregate marginal dis-utility form pollution. When the planner values more (resp. less) agents with
higher marginal dis-utility from pollution, then the tax is set at a higher (resp. lower) level.

Note that we can again use the first order conditions with respect to market weights to obtain

θi =
∑
j

πjλj

φj
− λi

φi
, (120)

from which we can rewrite

Φ =
∑
i

πiωi

(λi

φi
+
(
1− σ

)(
1 + ϵ+ γ

)(∑
j

πjλj

φj
− λi

φi

))
(121)

=
∑
j

πj
λj

φj
+
(
1− (1 + ϵ+ γ)(1− σ)

)
cov(λi/φi, ωi), (122)

Ψ =
1

ς

∑
i

πi

(∑
j

πjλj

φj
− λi

φi

)
ei (123)

= −cov(λi/φi, ei)

ς
, (124)

Λt =
∑
i

πi

(∑
j

πjλj

φj
− λi

φi

)
d̄i,t (125)

= −cov(λi/φi, d̄i,t), (126)

and obtain an expression for market weights

φi =
1

e
γ(σ−1)
i

(
Uc,0(R0N0ai,0 + T ) +

∑
tNtβ

t
(
Uh,t

ei
ς − Ud,td̄i,t

)
(1− σ)(1 + ϵ+ γ)

∑
tNtβtŨ(ct, dt, ht)

)1−(1+ϵ+γ)(1−σ)

D Calibration

D.1 Household heterogeneity

Productivity distribution We calibrate the ability distribution on the basis of hourly wage data
that we obtain from the Survey of Consumer Finances (SCF). For each of the 6,015 households in the
2013 wave of the survey, we sum the hours worked on their main job and potential additional job(s) in a
normal week. Annual labor supply of the respondent and their partner is then calculated by multiplying
weekly hours worked by 52 minus the number of weeks they have spent unemployed during the past 12
months minus the number of weeks spend on holidays (which we assume equals 3 for each worker). The
household hourly wage is then obtained as the household annual income from wages and salaries before
taxes, divided by the household total annual labor supply (i.e., the sum of the respondent and their
partner’s labor supply). This number reflects how much households members were paid on average for
each hour of work they supplied in the past year.
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To obtain the hourly wage distribution, we make a few additional adjustments. We first drop all
households with an hourly wage below $1 or above $1,000. We also restrict the sample to households
who have worked at least 1 week over the past 12 months, who work at least 1 hour on a normal
week, and with no member working above 100 hours. Finally we restrict the sample to households
whose respondent is at least 18 years old, and at most 65 years old. Using this sub-sample, we divide
households in ten groups of hourly wage deciles. These correspond to I = 10 groups with size πi = 0.10.
For each group, we compute the average hourly wage.

Asset distribution For each of the ten productivity groups, we divide again households in ten
weighted deciles of net worth. For each sub-group, we compute the average net worth. This provides a
table in which households are split in 100 groups of equal size, with for each of these groups the average
hourly wage and the net worth.28

Because agents in our model are infinitely lived but hourly wage and asset holdings are positively
correlated with age, we control for generational heterogeneity. To do so, we divide households in ten
generations based on the age of the respondent, and compute the average hourly wage and net worth of
each of the 100 groups within each generation. We then obtain the average hourly wage and net worth
for each group as the average of that group over all generations. Table II below provides the results.

Table II: Distribution of households hourly wages and net worth by productivity deciles (rows) and net
worth deciles (columns), controlling for generational differences.

Net worth deciles

1st 2nd 3rd 4th 5th 6th 7th 8th 9th 10th Hourly wage

Pr
od

uc
tiv

ity
de

ci
le

s

1st -4.59e+04 -7.00e+03 1.22e+03 7.45e+03 1.79e+04 3.25e+04 6.44e+04 1.12e+05 2.18e+05 1.10e+06 6.44e+00
2nd -2.99e+04 -1.97e+03 4.89e+03 1.23e+04 2.50e+04 3.97e+04 6.46e+04 1.03e+05 1.83e+05 1.04e+06 1.11e+01
3rd -4.13e+04 -6.00e+03 3.72e+03 1.29e+04 2.76e+04 4.47e+04 7.69e+04 1.09e+05 2.01e+05 7.19e+05 1.42e+01
4th -4.56e+04 -2.65e+03 1.44e+04 3.31e+04 5.38e+04 7.48e+04 1.01e+05 1.50e+05 2.67e+05 7.64e+05 1.73e+01
5th -4.94e+04 -2.15e+03 1.55e+04 3.58e+04 6.72e+04 9.53e+04 1.40e+05 2.07e+05 2.98e+05 1.10e+06 2.05e+01
6th -3.82e+04 1.21e+04 3.94e+04 7.26e+04 1.14e+05 1.60e+05 2.13e+05 2.88e+05 4.60e+05 1.75e+06 2.41e+01
7th -2.41e+04 3.79e+04 6.75e+04 1.03e+05 1.54e+05 2.06e+05 2.63e+05 3.58e+05 5.32e+05 1.23e+06 2.86e+01
8th -2.93e+04 3.00e+04 7.10e+04 1.34e+05 2.11e+05 2.80e+05 3.90e+05 5.04e+05 6.94e+05 2.57e+06 3.48e+01
9th 4.38e+03 6.86e+04 1.44e+05 2.11e+05 3.07e+05 4.20e+05 5.53e+05 7.45e+05 1.08e+06 3.50e+06 4.47e+01
10th -8.53e+04 1.40e+05 2.77e+05 4.43e+05 6.38e+05 8.55e+05 1.29e+06 2.14e+06 3.45e+06 1.00e+07 1.01e+02

Note: The rows correspond to productivity (i.e. hourly wage) decile groups. The last column corresponds to the average
hourly wage for each productivity group. Columns 1 to 10 correspond to net worth decile groups within productivity
groups. The number reported in these columns are the average net worth for each group. All groups are defined for a
given generation, and values correspond to the weighted average across ten generation groups. Example: 1.10e+06 in the
1st row, 10th column, means that among the people that belong to the bottom 10% of the hourly wage distribution of
their generation, the 10% wealthiest have an average net worth of $1.10e+06.

28Kuhn and Ríos-Rull (2016) provide extensive descriptive statistics about income and wealth inequalities from the
SCF. On the sub-sample of households from whom we compute the productivity distribution, we find that income is on
average higher, wealth is on average lower, and the two variables are only slightly more correlated (correlation coefficient
of 0.60 instead of 0.58).
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Distribution of energy consumption Let us denote Xi,t the expenditure share of energy for an
household of type i at time t,

Xi,t ≡
di,t
(
pE,t + τD,t

)
di,t
(
pE,t + τD,t

)
+ ci,t

. (127)

From the households’ first order conditions we have

ud,i,t
uc,i,t

=
ϵci,t

di,t − d̄i,t
= pE,t + τD,t, (128)

with ud,i,t, uc,i,t the marginal utility of energy and final good consumption of agent i at time t. Substi-
tuting the previous expression into (127) we get

Xi,t =
di,t
( ϵci,t
di,t− ¯di,t

)
di,t
( ϵci,t
di,t− ¯di,t

)
+ ci,t

.

Rearranging the previous equation, we can express the necessity parameter of agent i in period t (d̄i,t)
as a function of its observed consumption level (di,t), its observed energy consumption share (Xi,t), and
the parameter of relative preference for energy (ϵ) common to all households

d̄i,t = di,t

(
1− ϵ

(1−Xi,t)

Xi,t

)
. (129)

We obtain the initial distribution of households’ energy expenditures and energy consumption shares
from the Consumer Expenditure Surveys (CEX). To be consistent with the timing of DICE, we pool
surveys from the 20 quarters between January 2011 and December 2015, for a total of 129,573 obser-
vations.

Energy expenditures (di) are obtained by summing expenditures on gasoline and motor oil, electric-
ity, natural gas, fuel oil, and other fuels. The energy expenditure shares (Xi) are obtained by dividing
energy expenditures by total expenditures. To determine hourly wages, we apply the same procedure
as with the SCF. We first compute the household annual wage by summing the income received from
salary or wages before taxes. We then compute the annual labor supply of the respondent and its
partner: we multiply the number of hours usually worked per week by the number of weeks worked in
the past twelve months, minus 3 weeks of imputed holidays. The household hourly wage is then the
ratio of the household annual wage over annual hours. Just like with the SCF data, this number reflects
how much households members were paid on average for each hour of work they supplied in the past
year.29

In order to characterize the joint distribution of hourly wages and energy expenditure shares, we
restrict our sample to working households, following the same sample definition as with the SCF.
Using this sub-sample, we divide households in ten groups of hourly wage deciles. For each group,
we compute the average hourly wage. For each of the ten groups, we divide again households in five
weighted quintiles of energy expenditure share, and compute the average energy expenditure share.
This provides a table in which households are split in 50 groups of equal size, with for each of these

29The bottom hourly wage is $6.59 and the top hourly wage is $110.12 (without generational adjustments).
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groups the average hourly wage and the energy expenditure share.30 Since energy consumption shares
do not appear to be strongly determined by age among working households, we do not control for
generational differences. However, we control for seasonality and yearly variations that could lead to
overestimate consumption heterogeneity. We proceed in the same way as with generational controls: we
group individuals based on their ranking relative to the people interviewed in the same month and same
year. We then compute the average for each group over all time periods. The resulting distribution of
initial energy shares {Xi}i∈I is presented in Table III.

Finally, in order to obtain the distribution of d̄i, we also need to determine ϵ. Relative to the data,
the model gives us a degree of freedom, hence we assume ϵ is such that the group i with the lowest
consumption share has d̄i = 0, which gives ϵ ≃ 0.0263. [To be added: calibration going forward.]

Table III: Distribution of households energy expenditure shares by productivity deciles (rows) and
expenditure share quintiles (columns), controlling for seasonality and time trend.

Expenditure share quintiles

1st 2nd 3rd 4th 5th Average

Pr
od

uc
tiv

ity
de

ci
le

s

1st 2.69% 7.59% 11.42% 15.88% 24.39% 12.70%
2nd 3.50% 8.07% 11.48% 15.26% 22.83% 12.51%
3rd 4.13% 8.29% 11.31% 14.78% 21.79% 12.33%
4th 4.09% 7.99% 10.86% 14.00% 20.46% 11.84%
5th 4.09% 7.63% 10.33% 13.39% 19.45% 11.20%
6th 3.93% 7.23% 9.75% 12.78% 18.86% 10.74%
7th 3.83% 6.90% 9.25% 12.03% 17.89% 10.19%
8th 3.47% 6.22% 8.44% 11.17% 16.96% 9.45%
9th 3.04% 5.63% 7.76% 10.29% 16.05% 8.76%
10th 2.56% 4.95% 7.01% 9.65% 15.60% 8.16%

Note: The rows correspond to productivity (i.e. hourly wage) decile groups. The column “Average” corresponds to
the average energy expenditure share for each productivity group. Columns 1 to 5 correspond to energy expenditure
share quintile groups within productivity decile groups. The numbers reported in these columns are the average energy
expenditure shares for each group. All groups are defined for a given month and year, and values correspond to the
weighted average across all periods. Example: 2.69% in the 1st row, 1st column, means that among the people that
belong to the bottom 10% of the hourly wage distribution at the month × year they were interviewed, the 20% with
lowest energy shares spend on average 2.69% of their total expenditures in energy. Sample: CEX from 2011 to 2015, only
workers included.

30We chose to divide each decile group in quintiles instead of deciles in order to mitigate the impact of potential outliers.
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D.2 Parameters choice

Baseline hours worked We also use the SCF 2013 to compute the initial labor supply that we
impute to the model. To do so, we again restrict the sample to individuals between 18 and 65 years old.
However, because our aim is not to compute hourly wages but to look at the average labor supply, we
do not eliminate outliers based on their hourly wage or labor supply. In particular, we keep unemployed
households for whom the hourly wage is not observed, as dropping them would lead to overestimate
the average labor supply. For all households in the sample, we divide the annual labor supply by the
number of working age individuals (individuals between 18 and 65). This yields an average of 1440
hours annually. Assuming a maximum labor supply capacity of 52 weeks per year and 100 hours per
week per individual, this yields an average labor supply of 0.277 of the maximum capacity.
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Table IV: Calibration summary: climate parameters.

Parameter Description Value

Carbon stocks
SAt
2015 Initial carbon concentration in atmosphere (in GtC) 851

SUp
2015 Initial carbon concentration in upper strata (in GtC) 460

SLo
2015 Initial carbon concentration in lower strata (in GtC) 1740
SAt
eq Equilibrium carbon concentration in atmosphere (in GtC) 588

Eland
2015 Initial CO2 emissions from land (GtCO2 per year) 2.6

gEland Decline rate of land emissions (per period) 0.115

Carbon cycle transition matrix
b1,1 Carbon cycle coefficient 0.88
b2,1 Carbon cycle coefficient 0.047
b3,1 Carbon cycle coefficient 0
b1,2 Carbon cycle coefficient 0.12
b2,2 Carbon cycle coefficient 0.94796
b3,2 Carbon cycle coefficient 0.00075
b1,3 Carbon cycle coefficient 0
b2,3 Carbon cycle coefficient 0.005
b3,3 Carbon cycle coefficient 0.99925

Radiative forcing
κ Forcings of equilibrium CO2 doubling (Wm-2) 3.6813

FEx
2015 Initial forcings of non-CO2 GHG (Wm-2) 0.5

FEx
2100 2100 forcings of non-CO2 GHG (Wm-2) 1

gFEx Rate of convergence of F 1/17

Temperature
T2015 Initial atmospheric temperature change (C since 1900) 0.85
TLo
2015 Initial lower stratum temperature change (C since 1900) 0.0068
ζ1 Climate model coefficient 0.1005
ζ2 Climate model coefficient 1.1875
ζ3 Climate model coefficient 0.088
ζ4 Climate model coefficient 0.025

Note: All parameters are taken from DICE (2016).
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Table V: Calibration summary: economic parameters.

Parameter Description Value Source

Preferences
β Utility discount rate (per year) 1/(1.015) DICE 2016
σ Inverse of IES 1.45 DICE 2016
ηF Frisch elasticity of labor supply 0.75 Chetty et al (2011)
ς Labor dis-utility coefficient 1.885 To target ηF and h2015

γ Labor dis-utility exponent 0.709 To target ηF and h2015

α0 Relative preference for the environment 7.61e-05 Adapted from Barrage (2019)

Production damages
a1 Damage intercept 0 DICE 2016
a2 Damage coefficient quadratic term 0.00175 DICE 2016 adjusted
a3 Damage exponent 2 DICE 2016

Production first sector
α Return to scale on labor sector 1 0.3 DICE 2016
ν Return to scale on energy sector 1 0.04 Golosov et al (2014)
δ Depreciation rate on capital (per year) 0.1 DICE 2016

r2015 Initial net rate of return on capital 0.023 To target steady state
Y2015 Initial output (in trillions 2015 USD) 70.807 World Bank (2011-2015)

hh1,2015 Initial share of labor in sector 1 0.976 To equate MPL across sectors
kk1,2015 Initial share of capital in sector 2 0.926 To equate MPL across sectors
E2015 Initial industrial emissions (GtCO2 per year) 35.85 DICE 2016
h2015 Initial labor supply per capita 0.277 Computed from SCF
A1,2015 Initial TFP sector 1 141.9 To target Y2015

Production second sector
αE Return to scale on capital sector 2 0.403 Barrage (2019)

A2,2015 Initial TFP sector 2 87.1 To target E2015

Abatement costs
P backstop
2015 Backstop price in 2015 (in $/tCO2) 550 DICE 2016

gPbackstop Decline rate backstop price (per period) 2.5% DICE 2016
c2 Exponent abatement cost function 2.6 DICE 2016

µ2015 Initial abatement share 0.03 DICE 2016

Government
Gt/Yt Government spending to GDP ratio 0.3030 IMF-GFS
B2015 Initial public debt to GDP ratio 0.2220 IMF-GFS
τH,2015 Initial tax rate on labor income 0.255 Trabandt & Uhlig (2012)
τK,2015 Initial tax rate on capital income 0.411 Trabandt & Uhlig (2012)
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Calibration summary: economic parameters (continued).

Exogenous growth parameters
gA1,2015 Initial TFP growth rate sector 1 (per period) 0.076 DICE 2016
ggA1,t Decline rate TFP growth sector 1 (per year) 0.005 DICE 2016
gA2,2015 Initial TFP growth rate sector 2 (per period) 0.076 DICE 2016
ggA2,t Decline rate TFP growth sector 2 (per year) 0.005 DICE 2016
N2015 Initial population (in millions) 1,309 World bank (2015)
Nmax Asymptotic population (in millions) 2,034 DICE 2016 US-adjusted
gN Rate of convergence of population 0.134 DICE 2016

Note: The adjustments relative to DICE 2016 for population and damages are described in the calibration section.
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E Additional quantitative results

E.1 Alternative damages
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Figure 6: Optimal Income Taxes, Alternative Damages.
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Figure 7: Optimal Carbon Taxes ($/tCO2), Alternative Damages.
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Figure 8: Temperature on the Optimal Path, Alternative Damages.
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Figure 9: Carbon Tax Decomposition, Alternative Damages.
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E.2 Third-best policies
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Figure 10: Optimal Income Taxes, Given Labor Tax.
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Figure 11: Optimal Income Taxes, Given Capital Tax.
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Figure 12: Optimal Carbon Taxes ($/tCO2), Given Income Taxes.

Table VI: Government Budget Adjustment, Given Capital-Income Taxes.

Revenue Source Revenue Use

Labor Capital Carbon Gov. Cons. Transfer Interest

No Carbon Tax 31.5% 6.2% 0.0% 18.5% 2.1% 16.5%

Optimal Carbon Tax 30.8% 6.1% 1.1% 18.4% 2.2% 17.0%

Change −0.7% −0.2% 1.1% −0.1% 0.0% 0.5%

Note: Numbers represent the present value of each component of the government budget constraint

divided by the present value of GDP.

Table VII: Government Budget Adjustment, Given Labor-Income Taxes.

Revenue Source Revenue Use

Labor Capital Carbon Gov. Cons. Transfer Interest

No Carbon Tax 17.2% 5.5% 0.0% 16.0% 5.0% 2.1%

Optimal Carbon Tax 17.0% 5.4% 0.8% 15.9% 5.7% 2.1%

Change −0.2% −0.1% 0.8% −0.1% 0.7% 0.0%

Note: Numbers represent the present value of each component of the government budget constraint

divided by the present value of GDP.
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Figure 13: Period Welfare Gains (%), Given Capital-Income Taxes.
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Figure 14: Period Welfare Gains (%), Given Labor-Income Taxes.
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E.3 Initial wealth inequality
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Figure 15: Optimal Income Taxes, Initial Wealth Heterogeneity and Exogenous Initial Capital Tax.
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Figure 16: Optimal Carbon Taxes ($/tCO2), Initial Wealth Heterogeneity and Exogenous Initial Capital
Tax.
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Figure 17: Carbon Tax Decomposition, Initial Wealth Heterogeneity and Exogenous Initial Capital
Tax.

Table VIII: Government Budget Adjustment, Initial Wealth Heterogeneity and Exogenous Initial Cap-
ital Tax.

Revenue Source Revenue Use

Labor Capital Carbon Gov. Cons. Transfer Interest

No Carbon Tax 34.2% 3.2% 0.0% 17.9% 18.1% 1.5%

Optimal Carbon Tax 33.6% 3.2% 0.9% 17.8% 18.5% 1.5%

Change −0.6% 0.0% 0.9% −0.1% 0.5% 0.0%

Note: Numbers represent the present value of each component of the government budget constraint

divided by the present value of GDP.
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Figure 18: Welfare Gains (%), Initial Wealth Heterogeneity and Exogenous Initial Capital Tax.
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